数据科学分布——Beta分布

本文深入探讨了贝塔分布的概念,展示了概率密度函数(PDF)和累积概率密度函数(CDF)的图形,并通过Python代码解释了参数α和β如何影响分布形状。通过对比不同参数值,阐述了贝塔分布如何描述区间(0,1)内随机变量的概率分布。此外,还提供了随机数据生成示例以及概率计算实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布。

可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# 加载功能包
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import matplotlib.style as style
from IPython.core.display import HTML

# 指定大小
%matplotlib inline
style.use('fivethirtyeight')
plt.rcParams['figure.figsize']=(14,7)
plt.figure(dpi=100)

# PDF 概率密度函数
plt.plot(np.linspace(0,1,100),stats.beta.pdf(np.linspace(0,1,100),a=2,b=2))
print(stats.beta.pdf(np.linspace(0,1,100),a=2,b=2))
# linspace选择取值;beta分布
plt.fill_between(np.linspace(0,1,100),stats.beta.pdf(np.linspace(0,1,100),a=2,b=2),alpha=.45,)
# 进行图像填充

# CDF累计概率密度函数
plt.plot(np.linspace(0,1,100),stats.beta.cdf(np.linspace(0,1,100),a=2,b=2))

# 补充图设置:LEGEND、TICKS与TITLE
plt.text(x=.4, y=1, s="PDF(normed)", alpha = 75, weight="bold", color="#008fd5")
plt.text(x=0.6, y=0.5, s="CDF", alpha = 75, weight="bold", color="#fc4f30")
plt.tick_params(axis = 'both', which ='major', labelsize = 18)
plt.axhline(y = 0, color ='black', linewidth = 1.3, alpha = 7)
plt.text(x = -.125, y = 1.8, s = "Beta Distribution - Overview", fontsize = 26, weight = 'bold', alpha = 75)
plt.text(x = -.125, y = 1.65, s = "$y \\sim Beta(\\alpha,\\beta)$, given $ \\alpha = 2 $ and $ \\beta = 2$. ", fontsize = 20, alpha = 75)

[0. 0.05999388 0.11876339 0.17630854 0.23262932 0.28772574
0.3415978 0.39424549 0.44566881 0.49586777 0.54484236 0.59259259
0.63911846 0.68441996 0.72849709 0.77134986 0.81297827 0.85338231
0.89256198 0.93051729 0.96724824 1.00275482 1.03703704 1.07009489
1.10192837 1.1325375 1.16192225 1.19008264 1.21701867 1.24273033
1.26721763 1.29048056 1.31251913 1.33333333 1.35292317 1.37128864
1.38842975 1.4043465 1.41903887 1.43250689 1.44475054 1.45576982
1.46556474 1.47413529 1.48148148 1.48760331 1.49250077 1.49617386
1.49862259 1.49984695 1.49984695 1.49862259 1.49617386 1.49250077
1.48760331 1.48148148 1.47413529 1.46556474 1.45576982 1.44475054
1.43250689 1.41903887 1.4043465 1.38842975 1.37128864 1.35292317
1.33333333 1.31251913 1.29048056 1.26721763 1.24273033 1.21701867
1.19008264 1.16192225 1.1325375 1.10192837 1.07009489 1.03703704
1.00275482 0.96724824 0.93051729 0.89256198 0.85338231 0.81297827
0.77134986 0.72849709 0.68441996 0.63911846 0.59259259 0.54484236
0.49586777 0.44566881 0.39424549 0.3415978 0.28772574 0.23262932
0.17630854 0.11876339 0.05999388 0. ]
在这里插入图片描述

参数影响

数量

plt.figure(dpi=100)
#a是成功次数、b是失败次数

# PDF A=B=1
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=1,b=1))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=1,b=1),alpha=.45,)

# PDF A=B=10
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=10,b=10))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=10,b=10),alpha=.45,)

# PDF A=B=100
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=100,b=100))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=100,b=100),alpha=.45,)

# LEGEND TICKS TITLE
plt.text(x=.1, y=1.45, s=r"$ \alpha = 1, \beta = 1 $", alpha = 75, weight="bold", color="#008fd5")
plt.text(x=0.325, y=3.5, s=r"$ \alpha = 10, \beta = 10 $", rotation=35, alpha = 75, weight="bold", color="#fc4f30")
plt.text(x=.4125, y=8, s=r"$ \alpha = 100, \beta = 100 $", rotation=75, alpha = 75, weight="bold", color="#e5ae38")
plt.tick_params(axis = 'both', which ='major', labelsize = 18)
plt.axhline(y = 0, color ='black', linewidth = 1.3, alpha = 7)
plt.text(x = -.08, y = 12.75, s = r"Beta Distribution - constant $ \frac{\alpha}{\beta} $, varying $\alpha+\beta$", fontsize = 26, weight = 'bold', alpha = 75)

在这里插入图片描述

比例

plt.figure(dpi=100)
#a是成功次数:1、b是失败次数:0

# PDF A/B=1/3
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=25,b=75))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=25,b=75),alpha=.45,)

# PDF A/B=1
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=50,b=50))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=50,b=50),alpha=.45,)

# PDF A/B=3
plt.plot(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=75,b=25))
plt.fill_between(np.linspace(0,1,200),stats.beta.pdf(np.linspace(0,1,200),a=75,b=25),alpha=.45,)

# LEGEND TICKS TITLE
plt.text(x=.15, y=5, s=r"$ \alpha = 25, \beta = 75 $", rotation=75, alpha = 75, weight="bold", color="#008fd5")
plt.text(x=0.39, y=5, s=r"$ \alpha = 50, \beta = 50 $", rotation=75, alpha = 75, weight="bold", color="#fc4f30")
plt.text(x=.65, y=5, s=r"$ \alpha = 75, \beta = 25 $", rotation=75, alpha = 75, weight="bold", color="#e5ae38")
plt.tick_params(axis = 'both', which ='major', labelsize = 18)
plt.axhline(y = 0, color ='black', linewidth = 1.3, alpha = 7)
plt.text(x = -.08, y = 11, s = r"Beta Distribution - constant $ \frac{\alpha}{\beta} $, varying $\alpha+\beta$", fontsize = 26, weight = 'bold', alpha = 75)

在这里插入图片描述

随机产生数据

from scipy.stats import beta

# draw a single sample
print(beta.rvs(a=2,b=2),end="\n\n")

# draw 10 samples
print(beta.rvs(a=2,b=2,size=10), end="\n\n")

0.39008533097914994

[0.29036031 0.81142835 0.55814129 0.56748235 0.47717343 0.90101806
0.58081651 0.72243883 0.91436309 0.15177402]

概率密度函数

from scipy.stats import beta

# additional imoprts for plotting purpose
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams["figure.figsize"] = (14,7)

# continuous pdf for the plot
x_s = np.linspace(0,1,100)
y_s = beta.pdf(a=2,b=2,x=x_s)
plt.scatter(x_s, y_s);

在这里插入图片描述

累积概率密度函数

from scipy.stats import beta

# probabolity of x less or equal 0.3
print("P(X<0.3)={:.3}".format(beta.cdf(a=2,b=2,x=0.3)))

# probability of x in [-0.2, +0.2]
print("P(-0.2<X<0.2)={:.3}".format(beta.cdf(a=2,b=2,x=0.2)-beta.cdf(a=2,b=2,x=-0.2)))

P(X<0.3)=0.216
P(-0.2<X<0.2)=0.104

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥都鼓捣的小yao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值