leetcode 107.二叉树的层次遍历II

本文详细解析了LeetCode107题“二叉树的层次遍历II”的解题思路,通过队列实现自底向上的层次遍历,逐层从左向右输出节点值,适用于算法学习和面试准备。

leetcode 107.二叉树的层次遍历II

题目描述

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

例如:
给定二叉树 [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

返回其自底向上的层次遍历为:

[
  [15,7],
  [9,20],
  [3]
]

解题思路

采用队列的方法去存储每一个节点,关键是如何判断当前的节点属于哪一层,定义两个遍历,pushCount、popCount,当向队列中添加元素时,pushCount加一;当弹出队列时,popCount减一,当popCount减少到零时,表示该层遍历结束,就可以识别每一层的节点。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        vector<vector<int>> res;
        queue<TreeNode*> qNode;
        if(!root){
            return res;
        }
        qNode.push(root);
        int pushCount = 0, popCount = 1;
        vector<int> level;
        while(!qNode.empty()){
            TreeNode* temp = qNode.front();
            qNode.pop();
            if(popCount == 0){
                res.insert(res.begin(), level);
                level = {};
                popCount = pushCount;
                pushCount = 0;
            }
            if(temp->left){
                qNode.push(temp->left);
                pushCount++;
            }
            if(temp->right){
                qNode.push(temp->right);
                pushCount++;
            }
            level.push_back(temp->val);
            popCount--;
        }
        res.insert(res.begin(), level);
        return res;
    }
};

欢迎大家关注我的个人公众号,同样的也是和该博客账号一样,专注分享技术问题,我们一起学习进步
在这里插入图片描述

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值