默认Jeston Orin Nano平台已经安装JetPack6.2.1。
step1 : 更新pip
sudo apt update
sudo apt install python3-pip -y
sudo -H pip install -U pip (这一步更新系统pip,可能会有warning)
step2 : 安装ultralytics
这里使用清华源安装
sudo -H pip install ultralytics -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
如果安装中报错无法卸载sympy1.9,使用如下命令卸载后再安装
sudo apt purge python3-sympy
step3 :(重新)安装torch/torchvision
稳妥起见,先把之前torch/torchvision卸载
sudo -H pip uninstall torch torchvision
然后安装ultralytics特供版,JetPack6.2需要用torch-2.8.0-cp310-cp310-linux_aarch64.whl和相对应的torchvision-0.23.0-cp310-cp310-linux_aarch64.whl,从github上下载后安装
sudo -H pip install torch-2.8.0-cp310-cp310-linux_aarch64.whl
sudo -H pip install torchvision-0.23.0-cp310-cp310-linux_aarch64.whl
step 4:安装cuSPARSELt修复依赖关系
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install libcusparselt0 libcusparselt-dev
step 5:安装onnx/onnxslim/onnxruntime-gpu
使用清华源安装onnx和onnxslim
sudo -H pip install onnx onnxslim -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
onnxruntime-gpu还是ultralytics的特供版,版本onnxruntime_gpu-1.20.0-cp310-cp310-linux_aarch64.whl,从github上下载后安装
sudo -H pip install onnxruntime_gpu-1.20.0-cp310-cp310-linux_aarch64.whl
step 6:安装numpy1.23.5(替换更新中安装的num2.x)
sudo -H pip install numpy==1.23.5 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
部署完成,可以用python脚本中测试
from ultralytics import YOLO
model = YOLO("yolo11n.pt") # 可以从github上预先下载
model.export(format="engine") # creates 'yolo11n.engine'
trt_model = YOLO("yolo11n.engine")
results = trt_model("https://ultralytics.com/images/bus.jpg") # FP32精度,640x640的图片推理时间大约20ms
3755

被折叠的 条评论
为什么被折叠?



