杭电OJ题1673 Optimal Parking 解题报告

本文介绍了一个经典的计算机科学问题:如何选择最佳停车位置以最小化购物时的行走距离。问题设定在一个直线上分布着多个商店的长街,目标是最小化从停车点到各商店的总行走距离。文章提供了一个简单的C语言程序实现,该程序通过确定最小和最大商店位置来计算最远可能的步行距离。

Optimal Parking

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 982    Accepted Submission(s): 861



Problem Description
When shopping on Long Street, Michael usually parks his car at some random location, and then walks to the stores he needs.
Can you help Michael choose a place to park which minimises the distance he needs to walk on his shopping round?
Long Street is a straight line, where all positions are integer.
You pay for parking in a specific slot, which is an integer position on Long Street. Michael does not want to pay for more than one parking though. He is very strong, and does not mind carrying all the bags around.
 

Input
The first line of input gives the number of test cases, 1 <= t <= 100. There are two lines for each test case. The first gives the number of stores Michael wants to visit, 1 <= n <= 20, and the second gives their n integer positions on Long Street, 0 <= xi <= 99.
 

Output
Output for each test case a line with the minimal distance Michael must walk given optimal parking.
 

Sample Input
2 4 24 13 89 37 6 7 30 41 14 39 42
 

Sample Output
152 70
 

——————————————————————————————————————————————————————
/****************************
 *Name:Optimal Parking.c
 *Tags:ACM water
 ****************************/

#include <stdio.h>

int main()
{
      int n, t, max, min, i, pos;
      scanf("%d", &t);
      while(t--) {
	    scanf("%d", &n);
	    max = 0;
	    min = 100;
	    for(i = 0; i < n; i++) {
		  scanf("%d", &pos);
		  if(pos < min) {
			min = pos;
		  }
		  if(pos > max) {
			max = pos;
		  }
	    }
	    printf("%d\n", (max-min)*2);
      }
      return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值