HDU 1673 Optimal Parking【简单题】

本文介绍了一个帮助找到最优停车地点的问题解决方法,目的是最小化购物时行走的距离。通过将商店的位置进行排序并找出最大和最小值,可以计算出从任意一点出发来回走两次所需的最短距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
中文题目  来回走两次
中文翻译-大意   去商店购物,商店都是在一条街上面的,所以走完应该是来回走两次的

解题思路:排序找最大值和最小值
关键点:找最小点和最大点
解题人:lingnichong
解题时间:2014-09-21 00:22:09
解题体会:看了很久看懂意思,但方法上用错了,后来想了想,不管停在那里都要将整个街道最短和最长的路走两遍
*/


Optimal Parking

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1719    Accepted Submission(s): 1461


Problem Description
When shopping on Long Street, Michael usually parks his car at some random location, and then walks to the stores he needs.
Can you help Michael choose a place to park which minimises the distance he needs to walk on his shopping round?
Long Street is a straight line, where all positions are integer.
You pay for parking in a specific slot, which is an integer position on Long Street. Michael does not want to pay for more than one parking though. He is very strong, and does not mind carrying all the bags around.
 

Input
The first line of input gives the number of test cases, 1 <= t <= 100. There are two lines for each test case. The first gives the number of stores Michael wants to visit, 1 <= n <= 20, and the second gives their n integer positions on Long Street, 0 <= xi <= 99.
 

Output
Output for each test case a line with the minimal distance Michael must walk given optimal parking.
 

Sample Input
  
2 4 24 13 89 37 6 7 30 41 14 39 42
 

Sample Output
  
152 70
 

Source


#include<stdio.h>
#include<algorithm>
using namespace std;

int arr[25];

int main()
{
    int n,m;
    scanf("%d",&n);
    while(n--)
    {
        int i,t,sum=0;
        scanf("%d",&m);
        for(i=0;i<m;i++)
        	scanf("%d",&arr[i]);
    	sort(arr,arr+m);
    	sum=2*(arr[m-1]-arr[0]);
 		printf("%d\n",sum);
    }    
    return 0;
}   

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值