【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

### Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)
Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:
\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:
\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

### Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)
Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值