-- 简单的算数(一维直线)
-- 勾股定理(二维平面)
-- 三维空间
这个误差,也只比著名的哈代-拉马努金数的误差小1。哈代-拉马努金数是 。误差是1
费马大定理指出,没有三个正整数 a、b 和 c 满足方程 ,其中 n 是大于2的整数。
但就和
来说,似乎a=2n-1, b=2n, c=2n+1时,
非常接近于
。
所以我猜想 可以当做费马大定理
的一个近似解。
用计算机算了n从1到100,与
之间的差不超过0.25%。
当然,n越大,误差率会随着增长。
用二项式定理以及欧拉常数e的定义,可以证明n趋于无穷时,不等式左边约相当于右边的百分之97点5。
N | a | b | c | ERROR | ratio | ||||
1 | 1 | 2 | 3 | 1 | 2 | 3 | 3 | 0 | 0 |
2 | 3 | 4 | 5 | 9 | 16 | 25 | 25 | 0 | 0 |
3 | 5 | 6 | 7 | 125 | 216 | 343 | 341 | 2 | 0.005831 |
4 | 7 | 8 | 9 | 2401 | 4096 | 6561 | 6497 | 64 | 0.009755 |
5 | 9 | 10 | 11 | 59049 | 100000 | 161051 | 159049 | 2002 | 0.012431 |
6 | 11 | 12 | 13 | 1771561 | 2985984 | 4826809 | 4757545 | 69264 | 0.01435 |
7 | 13 | 14 | 15 | 62748517 | 105413504 | 170859375 | 168162021 | 2697354 | 0.015787 |
8 | 15 | 16 | 17 | 2562890625 | 4294967296 | 6975757441 | 6857857921 | 117899520 | 0.016901 |
9 | 17 | 18 | 19 | 1.18588E+11 | 1.98359E+11 | 3.22688E+11 | 3.16947E+11 | 5740530914 | 0.01779 |
10 | 19 | 20 | 21 | 6.13107E+12 | 1.024E+13 | 1.66799E+13 | 1.63711E+13 | 3.08815E+11 | 0.018514 |
11 | 21 | 22 | 23 | 3.50278E+14 | 5.84318E+14 | 9.5281E+14 | 9.34596E+14 | 1.8214E+13 | 0.019116 |
12 | 23 | 24 | 25 | 2.19146E+16 | 3.65203E+16 | 5.96046E+16 | 5.8435E+16 | 1.16967E+15 | 0.019624 |
13 | 25 | 26 | 27 | 1.49012E+18 | 2.48115E+18 | 4.05256E+18 | 3.97127E+18 | 8.12862E+16 | 0.020058 |
14 | 27 | 28 | 29 | 1.09419E+20 | 1.82059E+20 | 2.97558E+20 | 2.91478E+20 | 6.08012E+18 | 0.020433 |
15 | 29 | 30 | 31 | 8.62919E+21 | 1.43489E+22 | 2.34653E+22 | 2.29781E+22 | 4.87166E+20 | 0.020761 |
16 | 31 | 32 | 33 | 7.27423E+23 | 1.20893E+24 | 1.97799E+24 | 1.93635E+24 | 4.16363E+22 | 0.02105 |
17 | 33 | 34 | 35 | 6.52735E+25 | 1.08428E+26 | 1.77483E+26 | 1.73702E+26 | 3.78145E+24 | 0.021306 |
18 | 35 | 36 | 37 | 6.2119E+27 | 1.03144E+28 | 1.68901E+28 | 1.65263E+28 | 3.63724E+26 | 0.021535 |
19 | 37 | 38 | 39 | 6.24932E+29 | 1.03726E+30 | 1.69913E+30 | 1.66219E+30 | 3.69399E+28 | 0.02174 |
20 | 39 | 40 | 41 | 6.62662E+31 | 1.09951E+32 | 1.80168E+32 | 1.76217E+32 | 3.95041E+30 | 0.021926 |
21 | 41 | 42 | 43 | 7.38688E+33 | 1.22528E+34 | 2.00834E+34 | 1.96397E+34 | 4.43743E+32 | 0.022095 |
22 | 43 | 44 | 45 | 8.63587E+35 | 1.43205E+36 | 2.34788E+36 | 2.29564E+36 | 5.22376E+34 | 0.022249 |
23 | 45 | 46 | 47 | 1.05654E+38 | 1.75158E+38 | 2.87244E+38 | 2.80813E+38 | 6.43133E+36 | 0.02239 |
24 | 47 | 48 | 49 | 1.35005E+40 | 2.23764E+40 | 3.67034E+40 | 3.58768E+40 | 8.26534E+38 | 0.022519 |
25 | 49 | 50 | 51 | 1.79847E+42 | 2.98023E+42 | 4.88939E+42 | 4.7787E+42 | 1.1069E+41 | 0.022639 |
26 | 51 | 52 | 53 | 2.49359E+44 | 4.1313E+44 | 6.77911E+44 | 6.62489E+44 | 1.5422E+43 | 0.022749 |
27 | 53 | 54 | 55 | 3.59293E+46 | 5.95157E+46 | 9.76771E+46 | 9.5445E+46 | 2.2321E+45 | 0.022852 |
28 | 55 | 56 | 57 | 5.37224E+48 | 8.89743E+48 | 1.46048E+49 | 1.42697E+49 | 3.35139E+47 | 0.022947 |
29 | 57 | 58 | 59 | 8.32474E+50 | 1.37852E+51 | 2.26312E+51 | 2.21099E+51 | 5.21337E+49 | 0.023036 |
30 | 59 | 60 | 61 | 1.33524E+53 | 2.21074E+53 | 3.6299E+53 | 3.54598E+53 | 8.39209E+51 | 0.023119 |
31 | 61 | 62 | 63 | 2.21424E+55 | 3.66558E+55 | 6.01945E+55 | 5.87982E+55 | 1.39635E+54 | 0.023197 |
32 | 63 | 64 | 65 | 3.79226E+57 | 6.2771E+57 | 1.03093E+58 | 1.00694E+58 | 2.39901E+56 | 0.02327 |
33 | 65 | 66 | 67 | 6.70102E+59 | 1.10905E+60 | 1.82166E+60 | 1.77915E+60 | 4.25163E+58 | 0.023339 |
34 | 67 | 68 | 69 | 1.22052E+62 | 2.01978E+62 | 3.31794E+62 | 3.24029E+62 | 7.76536E+60 | 0.023404 |
35 | 69 | 70 | 71 | 2.28938E+64 | 3.78819E+64 | 6.22361E+64 | 6.07757E+64 | 1.46039E+63 | 0.023465 |
36 | 71 | 72 | 73 | 4.41876E+66 | 7.31088E+66 | 1.20122E+67 | 1.17296E+67 | 2.82566E+65 | 0.023523 |
37 | 73 | 74 | 75 | 8.76891E+68 | 1.45069E+69 | 2.38378E+69 | 2.32758E+69 | 5.6205E+67 | 0.023578 |
38 | 75 | 76 | 77 | 1.78784E+71 | 2.95744E+71 | 4.86013E+71 | 4.74528E+71 | 1.14845E+70 | 0.02363 |
39 | 77 | 78 | 79 | 3.7423E+73 | 6.18998E+73 | 1.01732E+74 | 9.93228E+73 | 2.40895E+72 | 0.023679 |
40 | 79 | 80 | 81 | 8.03681E+75 | 1.32923E+76 | 2.18475E+76 | 2.13291E+76 | 5.18361E+74 | 0.023726 |
41 | 81 | 82 | 83 | 1.76964E+78 | 2.92663E+78 | 4.81063E+78 | 4.69627E+78 | 1.14354E+77 | 0.023771 |
42 | 83 | 84 | 85 | 3.99282E+80 | 6.60283E+80 | 1.08541E+81 | 1.05956E+81 | 2.58477E+79 | 0.023814 |
43 | 85 | 86 | 87 | 9.22601E+82 | 1.52557E+83 | 2.508E+83 | 2.44818E+83 | 5.98267E+81 | 0.023854 |
44 | 87 | 88 | 89 | 2.18196E+85 | 3.60776E+85 | 5.93144E+85 | 5.78972E+85 | 1.41721E+84 | 0.023893 |
45 | 89 | 90 | 91 | 5.27898E+87 | 8.72796E+87 | 1.43504E+88 | 1.40069E+88 | 3.43408E+86 | 0.02393 |
46 | 91 | 92 | 93 | 1.30588E+90 | 2.15894E+90 | 3.5499E+90 | 3.46482E+90 | 8.50763E+88 | 0.023966 |
47 | 93 | 94 | 95 | 3.3014E+92 | 5.45769E+92 | 8.97448E+92 | 8.7591E+92 | 2.15387E+91 | 0.024 |
48 | 95 | 96 | 97 | 8.52576E+94 | 1.40935E+95 | 2.31763E+95 | 2.26193E+95 | 5.56985E+93 | 0.024033 |
49 | 97 | 98 | 99 | 2.2481E+97 | 3.71602E+97 | 6.11117E+97 | 5.96411E+97 | 1.47059E+96 | 0.024064 |
50 | 99 | 100 | 101 | 6.0501E+99 | 1E+100 | 1.6446E+100 | 1.605E+100 | 3.96258E+98 | 0.024094 |
51 | 101 | 102 | 103 | 1.6611E+102 | 2.7454E+102 | 4.5154E+102 | 4.4065E+102 | 1.0893E+101 | 0.024123 |
52 | 103 | 104 | 105 | 4.6509E+104 | 7.6866E+104 | 1.2643E+105 | 1.2337E+105 | 3.0533E+103 | 0.024151 |
53 | 105 | 106 | 107 | 1.3275E+107 | 2.1939E+107 | 3.6086E+107 | 3.5214E+107 | 8.7248E+105 | 0.024178 |
54 | 107 | 108 | 109 | 3.8612E+109 | 6.3809E+109 | 1.0496E+110 | 1.0242E+110 | 2.5404E+108 | 0.024203 |
55 | 109 | 110 | 111 | 1.1441E+112 | 1.8906E+112 | 3.11E+112 | 3.0347E+112 | 7.5351E+110 | 0.024228 |
56 | 111 | 112 | 113 | 3.4521E+114 | 5.7044E+114 | 9.3841E+114 | 9.1565E+114 | 2.2759E+113 | 0.024252 |
57 | 113 | 114 | 115 | 1.0604E+117 | 1.7522E+117 | 2.8826E+117 | 2.8126E+117 | 6.9975E+115 | 0.024276 |
58 | 115 | 116 | 117 | 3.3149E+119 | 5.4773E+119 | 9.0111E+119 | 8.7922E+119 | 2.1895E+118 | 0.024298 |
59 | 117 | 118 | 119 | 1.0543E+122 | 1.742E+122 | 2.866E+122 | 2.7963E+122 | 6.9699E+120 | 0.02432 |
60 | 119 | 120 | 121 | 3.4105E+124 | 5.6348E+124 | 9.2709E+124 | 9.0452E+124 | 2.2566E+123 | 0.02434 |
61 | 121 | 122 | 123 | 1.1218E+127 | 1.8533E+127 | 3.0494E+127 | 2.9751E+127 | 7.4285E+125 | 0.024361 |
62 | 123 | 124 | 125 | 3.7507E+129 | 6.1965E+129 | 1.0196E+130 | 9.9472E+129 | 2.4858E+128 | 0.02438 |
63 | 125 | 126 | 127 | 1.2745E+132 | 2.1054E+132 | 3.4645E+132 | 3.3799E+132 | 8.453E+130 | 0.024399 |
64 | 127 | 128 | 129 | 4.3999E+134 | 7.2684E+134 | 1.196E+135 | 1.1668E+135 | 2.9204E+133 | 0.024418 |
65 | 129 | 130 | 131 | 1.5429E+137 | 2.5487E+137 | 4.1941E+137 | 4.0916E+137 | 1.0248E+136 | 0.024436 |
66 | 131 | 132 | 133 | 5.4942E+139 | 9.0757E+139 | 1.4935E+140 | 1.457E+140 | 3.6521E+138 | 0.024453 |
67 | 133 | 134 | 135 | 1.9864E+142 | 3.2811E+142 | 5.3996E+142 | 5.2675E+142 | 1.3213E+141 | 0.02447 |
68 | 135 | 136 | 137 | 7.2895E+144 | 1.2041E+145 | 1.9815E+145 | 1.933E+145 | 4.852E+143 | 0.024486 |
69 | 137 | 138 | 139 | 2.7147E+147 | 4.4839E+147 | 7.3794E+147 | 7.1986E+147 | 1.8081E+146 | 0.024502 |
70 | 139 | 140 | 141 | 1.0257E+150 | 1.6942E+150 | 2.7883E+150 | 2.7199E+150 | 6.8361E+148 | 0.024517 |
71 | 141 | 142 | 143 | 3.9315E+152 | 6.4934E+152 | 1.0687E+153 | 1.0425E+153 | 2.6218E+151 | 0.024532 |
72 | 143 | 144 | 145 | 1.5283E+155 | 2.5241E+155 | 4.1543E+155 | 4.0523E+155 | 1.0197E+154 | 0.024547 |
73 | 145 | 146 | 147 | 6.0237E+157 | 9.9485E+157 | 1.6374E+158 | 1.5972E+158 | 4.0217E+156 | 0.024561 |
74 | 147 | 148 | 149 | 2.407E+160 | 3.9753E+160 | 6.5431E+160 | 6.3823E+160 | 1.6079E+159 | 0.024575 |
75 | 149 | 150 | 151 | 9.7492E+162 | 1.6101E+163 | 2.6502E+163 | 2.585E+163 | 6.5162E+161 | 0.024588 |
76 | 151 | 152 | 153 | 4.0017E+165 | 6.6086E+165 | 1.0878E+166 | 1.061E+166 | 2.6761E+164 | 0.024601 |
77 | 153 | 154 | 155 | 1.6643E+168 | 2.7485E+168 | 4.5242E+168 | 4.4128E+168 | 1.1136E+167 | 0.024614 |
78 | 155 | 156 | 157 | 7.0125E+170 | 1.158E+171 | 1.9062E+171 | 1.8593E+171 | 4.6943E+169 | 0.024626 |
79 | 157 | 158 | 159 | 2.9928E+173 | 4.9421E+173 | 8.1353E+173 | 7.9348E+173 | 2.0044E+172 | 0.024638 |
80 | 159 | 160 | 161 | 1.2935E+176 | 2.136E+176 | 3.5162E+176 | 3.4295E+176 | 8.6674E+174 | 0.02465 |
81 | 161 | 162 | 163 | 5.661E+178 | 9.3479E+178 | 1.5388E+179 | 1.5009E+179 | 3.7951E+177 | 0.024662 |
82 | 163 | 164 | 165 | 2.5083E+181 | 4.1419E+181 | 6.8184E+181 | 6.6502E+181 | 1.6823E+180 | 0.024673 |
83 | 165 | 166 | 167 | 1.125E+184 | 1.8577E+184 | 3.0582E+184 | 2.9827E+184 | 7.5488E+182 | 0.024684 |
84 | 167 | 168 | 169 | 5.1072E+186 | 8.433E+186 | 1.3883E+187 | 1.354E+187 | 3.4283E+185 | 0.024695 |
85 | 169 | 170 | 171 | 2.3462E+189 | 3.874E+189 | 6.3778E+189 | 6.2202E+189 | 1.5756E+188 | 0.024705 |
86 | 171 | 172 | 173 | 1.0906E+192 | 1.8007E+192 | 2.9646E+192 | 2.8913E+192 | 7.3271E+190 | 0.024715 |
87 | 173 | 174 | 175 | 5.1287E+194 | 8.4681E+194 | 1.3942E+195 | 1.3597E+195 | 3.4471E+193 | 0.024725 |
88 | 175 | 176 | 177 | 2.4398E+197 | 4.0282E+197 | 6.632E+197 | 6.468E+197 | 1.6404E+196 | 0.024735 |
89 | 177 | 178 | 179 | 1.1739E+200 | 1.9381E+200 | 3.1909E+200 | 3.112E+200 | 7.8958E+198 | 0.024744 |
90 | 179 | 180 | 181 | 5.7118E+202 | 9.4303E+202 | 1.5526E+203 | 1.5142E+203 | 3.8434E+201 | 0.024754 |
91 | 181 | 182 | 183 | 2.8103E+205 | 4.6398E+205 | 7.6392E+205 | 7.4501E+205 | 1.8917E+204 | 0.024763 |
92 | 183 | 184 | 185 | 1.398E+208 | 2.308E+208 | 3.8001E+208 | 3.706E+208 | 9.4136E+206 | 0.024772 |
93 | 185 | 186 | 187 | 7.0302E+210 | 1.1607E+211 | 1.911E+211 | 1.8637E+211 | 4.7357E+209 | 0.024781 |
94 | 187 | 188 | 189 | 3.5736E+213 | 5.8998E+213 | 9.7143E+213 | 9.4734E+213 | 2.4081E+212 | 0.024789 |
95 | 189 | 190 | 191 | 1.836E+216 | 3.031E+216 | 4.9908E+216 | 4.867E+216 | 1.2376E+215 | 0.024797 |
96 | 191 | 192 | 193 | 9.5324E+218 | 1.5737E+219 | 2.5912E+219 | 2.5269E+219 | 6.4277E+217 | 0.024806 |
97 | 193 | 194 | 195 | 5.001E+221 | 8.256E+221 | 1.3594E+222 | 1.3257E+222 | 3.3733E+220 | 0.024814 |
98 | 195 | 196 | 197 | 2.6509E+224 | 4.3762E+224 | 7.2059E+224 | 7.0271E+224 | 1.7886E+223 | 0.024822 |
99 | 197 | 198 | 199 | 1.4196E+227 | 2.3434E+227 | 3.8588E+227 | 3.763E+227 | 9.5812E+225 | 0.024829 |
100 | 199 | 200 | 201 | 7.6791E+229 | 1.2677E+230 | 2.0874E+230 | 2.0356E+230 | 5.1844E+228 | 0.024837 |