【Pytorch】8.torch.nn.conv2d

这个函数和我们之前提到的【Pytorch】6.torch.nn.functional.conv2d的使用的作用相似,都是完成CV领域的卷积操作,这里就不在过多赘述

torch.nn.conv2d的使用

打开pytorch的官方文档,我们可以看到
在这里插入图片描述
在这里插入图片描述
torch.nn.conv2d包含了若干参数

  • in_channels:代表输入的通道数
  • out_channels:代表输出的通道数
  • kernel_size:代表卷积核的大小,既可以是int类型,也可以是tuple元组类型,比如(2,5)代表卷积核大小为两行五列
  • stride:代表卷积每次的步长
  • padding:代表输入层的边缘填充
  • padding_mode:代表边缘填充的规则,默认为用0填充
  • dilation:代表膨胀,默认为1
    我们也可以通过官方的这个链接link来对每个参数进行了解

具体的使用方法为

# With square kernels and equal stride
m = nn.Conv2d(16, 33, 3, stride=2)
# non-square kernels and unequal stride and with padding
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值