主要是了解思想,就不写具体的计算公式之类的了
(一) ICP算法(Iterative Closest Point迭代最近点)
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1
如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的
(图1)
ICP是改进自对应点集配准算法的
对应点集配准算法是假设一个理想状况,将一个模型点云数据X(如上图的PB)利用四元数
旋转,并平移
得到点云P(类似于上图的PR)。而对应点集配准算法主要就是怎么计算出qR和qT的,知道这两个就可以匹配点云了。
但是对应点集配准算法的前提条件是计算中的点云数据PB和PR的元素一一对应,这个条件在现实里因误差等问题,不太可能实线,所以就有了ICP算法
ICP算法是从源点云上的(PB)每个点 先计算出目标点云(PR)的每个点的距离,使每个点和目标云的最近点匹配,(记得这种映射方式叫满射吧)
这样满足了对应点集配准算法的前提条件、每个点都有了对应的映射点,则可以按照对应点集配准算法计算,但因为这个是假设,所以需要重复迭代运行上述过程,直到均方差误差小于某个阀值。
也就是说 每次迭代,整个模型是靠近一点,每次都重新找最近点,然后再根据对应点集批准算法算一次,比较均方差误差,如果不满足就继续迭代
文章出处:http://www.cnblogs.com/yin52133/ 本文可自行转载,但转载时记得给出原文链接
文章链接:http://www.cnblogs.com/yin52133/archive/2012/07/21/2602562.html
2251

被折叠的 条评论
为什么被折叠?



