目录
在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为 了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图下所示,内接多边形的 等长边越多,就越接近圆。这个过程也被称为逼近法。
事实上,逼近法就是积分的起源。 2000多年后,微积分的另一支,微分被发明出来。 在微分学最重要的应用是优化问题,即考虑如何把事情做到最好,这种问题在深度学习中是无处不在的。
在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情 况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。 最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型 与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:
- 优化(optimization):用模型拟合观测数据的过程;
- 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。
1、导数和微分
假设我们有一个函数f : R → R,其输入和输出都是标量。如果f的导数存在,这个极限被定义为
如果f ′ (a)存在,则称f在a处是可微的。如果f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微的。
1.1 定义函数:
为了更好地解释导数,让我们做一个实验。定义 u = f(x) = 3 − 4x 如下: