深度学习——微积分基础

目录

 1、导数和微分

1.1 定义函数:

1.2 趋近过程:

1.3 绘图表示:

2、偏导数

3、梯度

4、链式法则

5、学习心得


在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为 了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图下所示,内接多边形的 等长边越多,就越接近圆。这个过程也被称为逼近法

事实上,逼近法就是积分的起源。 2000多年后,微积分的另一支,微分被发明出来。 在微分学最重要的应用是优化问题,即考虑如何把事情做到最好,这种问题在深度学习中是无处不在的。

在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情 况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。 最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型 与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观测数据的过程;
  • 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

 1、导数和微分

假设我们有一个函数f : R → R,其输入和输出都是标量。如果f的导数存在,这个极限被定义为

如果f ′ (a)存在,则称f在a处是可微的。如果f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微的。

1.1 定义函数:

为了更好地解释导数,让我们做一个实验。定义 u = f(x) = 3x^{2} − 4x 如下:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQ淡写青春

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值