Problem Description
A cubic number is the result of using a whole number in a multiplication three times. For example,
3×3×3=27
so 27
is a cubic number. The first few cubic numbers are
1,8,27,64
and 125
.
Given an prime number p
.
Check that if p
is a difference of two cubic numbers.
Input
The first of input contains an integer
T (1≤T≤100)
which is the total number of test cases.
For each test case, a line contains a prime number p (2≤p≤10
12
)
.
For each test case, a line contains a prime number p (2≤p≤10
Output
For each test case, output 'YES' if given
p
is a difference of two cubic numbers, or 'NO' if not.
Sample Input
10 2 3 5 7 11 13 17 19 23 29
Sample Output
NO NO NO YES NO NO NO YES NONO
题意:给你一个素数,判断它是不是两个立方的差, 素数只能被1和它本身整除, 因为 该素数 = a^3-b^3=(a-b)*(a^2+a*b+b^2) ,因为a,b为正整数,所以a^2+a*b+b^2>1,a-b必定为1,该素数等于相邻两个数的立方差 现在 打表+二分 即可
AC代码如下:
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int maxn = 2000000+10; typedef long long llint; llint a[maxn]; llint lifang(llint x) { return x*x*x; } int main() { int t; llint n; for(int i=1;i<maxn;i++) { a[i]=lifang(i+1)-lifang(i); } cin>>t; while(t--) { cin>>n; if(binary_search(a,a+maxn,n))//二分 cout<<"YES"<<endl; else cout<<"NO"<<endl; } return 0; }