遥感语义分割数据集中的切图策略

遥感语义分割数据集中的切图策略

# 切图脚本
import argparse
import glob
import math
import os
import os.path as osp
import tempfile
import zipfile

import mmcv
import numpy as np
from mmengine.utils import ProgressBar, mkdir_or_exist

def clip_big_image(image_path, clip_save_dir, to_label=False):
    # Original image of Vaihingen dataset is very large, thus pre-processing
    # of them is adopted. Given fixed clip size and stride size to generate
    # clipped image, the intersection of width and height is determined.
    # For example, given one 5120 x 5120 original image, the clip size is
    # 512 and stride size is 256, thus it would generate 20x20 = 400 images
    # whose size are all 512x512.
    image = mmcv.imread(image_path)

    h, w, c = image.shape
    cs = 512 # todo 分割的大小
    ss = 256 # todo 分割的步长

    num_rows = math.ceil((h - cs) / ss) if math.ceil(
        (h - cs) / ss) * ss + cs >=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值