遥感目标检测相关 论文|代码|数据集 汇总

此GitHub代码库由SJTU-Thinklab团队维护,专注于DOTA相关挑战,包括旋转和水平检测。研究了多种先进模型如FPN、ResNet152为基础的两阶段检测器,以及针对旋转检测的专门基准。展示了从ResNet152到HRNet-W48的性能提升,并对比了不同模型在DOTA1.0和1.5任务中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ref:GitHub - SJTU-Thinklab-Det/DOTA-DOAI: This repo is the codebase for our team to participate in DOTA related competitions, including rotation and horizontal detection.

Abstract

This repo is the codebase for our team to participate in DOTA related competitions, including rotation and horizontal detection. We mainly use FPN-based two-stage detector, and it is completed by YangXue and YangJirui.

We also recommend a tensorflow-based rotation detection benchmark, which is led by YangXue.

Performance

DOTA1.0 (Task1)

ModelBackboneTraining dataVal datamAPModel LinkTrickslr schdData AugmentationGPUImage/GPUConfigs
FPNResNet152_v1d (600,800,1024)->MSDOTA1.0 trainvalDOTA1.0 test78.99modelALL2xYes2X GeForce RTX 2080 Ti1cfgs_dota1.0_res152_v1.py
### DOTA1.0 (Task2)
ModelBackboneTraining dataVal datamAPModel LinkTrickslr schdData AugmentationGPUImage/GPUConfigs
:------------::------------::---------::-----------::----------::-----------::---------::---------::---------::---------::---------::---------:
FPN (memory consumption)ResNet152_v1d (600,800,1024)->MSDOTA1.0 trainvalDOTA1.0 test81.23modelALL2xYes2X Quadro RTX 80001cfgs_dota1.0_res152_v1.py

Visualization

1

Performance of published papers on DOTA datasets

DOTA1.0 (Task1)

ModelBackbonemAPPaper LinkCode LinkRemarkRecommend
FR-O (DOTA)ResNet10152.93CVPR2018MXNetDOTA dataset, baseline
IENetResNet10157.14arXiv:1912.00969-anchor free
TOSOResNet10157.52ICASSP2020-geometric transformation
PIoU LossDLA-3460.5ECCV2020PytorchIoU loss, anchor free
R2CNNResNet10160.67arXiv:1706.09579TFscene text, multi-task, different pooled sizes, baseline
RRPNResNet10161.01TMM arXiv:1703.01086TFscene text, rotation proposals, baseline
Axis LearningResNet10165.98Remote Sensing-single stage, anchor free
MARNetResNet10167.19IJRS-based on scrdet
ICNResNet10168.16ACCV2018-image cascade, multi-scale
GSDetResNet10168.28TIP-scale reasoning
RADetResNeXt10169.09Remote Sensing-enhanced FPN, mask rcnn
KARNETResNet5068.87CISNRC 2020-attention denoising, anchor refining
RoI TransformerResNet10169.56CVPR2019MXNet, Pytorchroi transformer
CAD-NetResNet10169.90TGRS arXiv:1903.00857-attention
ProbIoUResNet5070.04arXiv:2106.06072TFgaussian bounding boxes, hellinger distance
A2S-DetResNet10170.64Remote Sensing-label assign
AOODResNet10171.18Neural Computing and Applications-attention + R-DFPN
Cascade-FFResNet15271.80ICME2020-refined retinanet + feature fusion
SCPNetHourglass10472,20GRSL-corner points
P-RSDetResNet10172.30Access-anchor free, polar coordinates
BBAVectorsResNet10172.32WACV2021Pytorchkeypoint based
ROPDetResNet101-DCN72.42J REAL-TIME IMAGE PR-point set representation
SCRDetResNet10172.61ICCV2019TF: R2CNN++, IoU-Smooth L1: RetinaNet-based, R3Det-basedattention, angular boundary problem
O2-DNetHourglass10472.8ISPRS, arXiv:1912.10694-centernet, anchor free
HRPNetHRNet-W4872.83GRSL-polar
SARDResNet10172.95Access-IoU-based weighted loss
GLS-NetResNet10172.96Remote Sensing-attention, saliency pyramid
ProjBBResNet10173.03Accesscode, codebasenew definition of bounding box
DRNHourglass10473.23CVPR(oral)codecenternet, feature selection module, dynamic refinement head, new dataset (SKU110K-R)
FADetResNet10173.28ICIP2019-attention
MFIAR-NetResNet15273.49Sensors-feature attention, enhanced FPN
CFC-NETResNet10173.50arXiv:2101.06849Pytorchcritical feature, label assign, refine
R3DetResNet15273.74AAAI2021TF, Pytorchrefined single stage, feature alignment
RSDetResNet15274.10AAAI2021TFquadrilateral bbox, angular boundary problem
SegmRDetResNet5074.14Neurocomputing-segmentation-baed, new training and inference mechanism
Gliding VertexResNet10175.02TPAMI arXiv:1911.09358Pytorchquadrilateral bbox
EFNU-Net75.27Preprints-Field-based
SARResNet15275.26Access-boundary problem
TricubeNetHourglass10475.26arXiv:2104.11435code2D tricube kernel
Mask OBBResNeXt-10175.33Remote Sensing-attention, multi-task
-DarkNet75.5TGRS-angle classification
FFAResNet10175.7ISPRS-enhanced FPN, rotation proposals
CBDA-NetDLA-34-DCN75.74TGRS-dual attention
APEResNeXt-101(32x4)75.75TGRS arXiv:1906.09447-adaptive period embedding, length independent IoU (LIIoU)
R4DetResNet15275.54Image Vis Comput-feature recursion and refinement
F3-NetResNet15276.02Remote Sensing-feature fusion and filtration
CenterMap OBBResNet10176.03TGRS-center-probability-map
CSLResNet15276.17ECCV2020TF: CSL_RetinaNet, Pytorch: YOLOv5_DOTA_OBB (CSL)angular boundary problem
MRDetResNet10176.24arXiv:2012.13135-arbitrary-oriented rpn, multiple subtasks
AFC-NetResNet10176.27Neurocomputing-adaptive feature concatenate
OWSREnsemble (ResNet101 + ResNeXt101 + mdcn-ResNet101)76.36CVPR2019 WorkShop TGRS-enhanced FPN
OPLDResNet10176.43J-STARSPytorchboundary problem, point-guided
R3Det++ResNet15276.56arXiv:2004.13316TFrefined single stage, feature alignment, denoising
PolarDetResNet10176.64IJRS arXiv:2010.08720-polar, center-semantic
Beyond Bounding-BoxResNet15276.67CVPR2021Pytorchpoint-based, reppoints
SCRDet++ResNet10176.81arXiv:2004.13316TFangular boundary problem, denoising
DAL+S2A-NetResNet5076.95AAAI2021Pytorchlabel assign
DCLResNet15277.37CVPR2021TFboundary problem
MSFFResNet5077.46JSTARS-rotation invariance features
RIDetResNet5077.62arXiv:2103.11636Pytorch, TFquad., representation ambiguity
RDDResNet10177.75Remote SensingPytorchrotation-decoupled
OSKDetResNet10177.81arXiv:2104.08697-keypoint localization (very similar to FR-Est)
CG-NetResNet10177.89arXiv:2103.11399Pytorchattention
Oriented RepPointsResNet10178.12arXiv:2105.11111Pytorchpoint-based, reppoints
FR-EstResNet101-DCN78.49TGRS-point-based estimator
S2A-NetResNet50/ResNet10179.42/79.15TGRSPytorchrefined single stage, feature alignment
O2DETRResNet5079.66arXiv:2106.03146-deformable detr, transformer
ROSDResNet10179.76Access-refined single stage, feature alignment
SARAResNet50/ResNet10179.91/79.13Remote Sensing-self-adaptive aspect ratio anchor, refine
ReDetReR50-ReFPN80.10CVPR2021Pytorchrotation-equivariant, rotation-invariant roI align
GWDResNet15280.23ICML2021TFboundary discontinuity, square-like problem, gaussian wasserstein distance loss
KLDResNet15280.63arXiv:2106.01883TFKullback-Leibler divergence, high-precision, scale invariance

DOTA1.0 (Task2)

ModelBackbonemAPPaper LinkCode LinkRemarkRecommend
FR-H (DOTA)ResNet10160.46CVPR2018MXNetDOTA dataset, baseline
Deep Active LearningResNet1864.26arXiv:2003.08793-CenterNet, Deep Active Learning
SBLResNet5064.77arXiv:1810.08103-single stage
CenterFPANetResNet1865.29HPCCT & BDAI 2020 arXiv:2009.03063-light-weight
MARNetResNet10171.73IJRS-based on scrdet
FMSSDVGG1672.43TGRS-IoU-based weighted loss, enhanced FPN
ICNResNet10172.45ACCV2018-image cascade, multi-scale
IoU-Adaptive R-CNNResNet10172.72Remote Sensing-IoU-based weighted loss, cascade
EFRVGG1673.49Remote SensingPytorchenhanced FPN
AF-EMSResNet10173.97Remote Sensing-scale-aware feature, anchor free
SCRDetResNet10175.35ICCV2019TFattention, angular boundary problem
FADetResNet10175.38ICIP2019-attention
MFIAR-NetResNet15276.07Sensors-feature attention, enhanced FPN
F3-NetResNet15276.48Remote Sensing-feature fusion and filtration
Mask OBBResNeXt-10176.98Remote Sensing-attention, multi-task
CenterMap OBBResNet10177.33TGRS-center-probability-map
ASSDVGG1677.8TGRS-feature aligned
AFC-NetResNet10178.06Neurocomputing-adaptive feature concatenate
CG-NetResNet10178.26arXiv:2103.11399Pytorchattention
OPLDResNet10178.35J-STARSPytorchboundary problem, point-guided
A2RMNetResNet10178.45Remote Sensing-attention, enhanced FPN, different pooled sizes
OWSREnsemble (ResNet101 + ResNeXt101 + mdcn-ResNet101)78.79CVPR2019 WorkShop TGRS-enhanced FPN
Parallel Cascade R-CNNResNeXt-10178.96Journal of Physics: Conference Series-cascade rcnn
DM-FPNResNet-Based79.27Remote Sensing-enhanced FPN
SCRDet++ResNet10179.35arXiv:2004.13316TFdenoising

DOTA1.5 (Task1)

ModelBackbonemAPPaper LinkCode LinkRemarkRecommend
APEResNeXt-101(32x4)78.34TGRS arXiv:1906.09447-length independent IoU (LIIoU)
OWSREnsemble (ResNet101 + ResNeXt101 + mdcn-ResNet101)76.60TGRS CVPR2019 WorkShop-enhanced FPN
ReDetReR50-ReFPN76.80CVPR2021Pytorchrotation-equivariant, rotation-invariant RoI Align,

DOTA1.5 (Task2)

ModelBackbonemAPPaper LinkCode LinkRemarkRecommend
CDD-NetResNet10161.3GRSL-attention
ReDetReR50-ReFPN78.08CVPR2021Pytorchrotation-equivariant, rotation-invariant RoI Align,
OWSREnsemble (ResNet101 + ResNeXt101 + mdcn-ResNet101)79.50TGRS CVPR2019 WorkShop-enhanced FPN

Related Articles

ModelPaper LinkCode LinkRemarkRecommend
SSSDETICIP2019 arXiv:1909.00292-vehicle detection, lightweight
AVDNetGRSL arXiv:1907.07477-vehicle detection, small object
ClusDetICCV2019Caffe2object cluster regions
DMNetCVPR2020 WorkShop-object cluster regions
AdaZoomarXiv:2106.10409-object cluster regions, reinforcement learning
OISarXiv:1911.07732related Pytorch codeOriented Instance Segmentation
ISOPIGARSS2020-Oriented Instance Segmentation
LR-RCNNarXiv:2005.14264 -vehicle detection-
GRS-DetTGRS-ship detection, rotation fcos-
DRBoxarXiv:1711.09405Caffesar object detection
DRBox-v2TGRSTFsar object detection-
RAPiDarXiv:2005.11623Pytorchoverhead fisheye images-
OcSaFPNarXiv:2012.09859-denoising-
CR2A-NetTGRS-ship detection-
-TGRS-knowledge distillation
CHPDetarXiv:2101.11189-new ship dataset

Other Rotation Detection Codes

Base MethodCode Link
RetinaNetRetinaNet_Tensorflow_Rotation
YOLOv3rotate-yolov3-Pytorch, YOLOv3-quadrangle-Pytorch, yolov3-polygon-Pytorch
YOLOv5rotation-yolov5-Pytorch, YOLOv5_DOTA_OBB (CSL)
CenterNetR-CenterNet-Pytorch

Dataset

NameCategoriesAnnotationPaperDownloadRemark
DOTA1.015oriented BBCVPR2018Link
DOTA1.516oriented BBCVPR2018Link
DOTA2.018oriented BBCVPR2018Link
iSAID15instanceCVPRW2019Link
AI-TOD8horizontal BBICPR2021Link
DIOR20horizontal BBISPRSBaidu Drive (ibhm)
NWPU VHR-1010horizontal BBTGRSLink
UCAS-AOD2oriented BBICIPLink, Baidu Drive (r2mr)
UAV-ROD1oriented BB-LinkCar
HRRSD13horizontal BBTGRSLink
RSOD4horizontal BBTGRSLink
SAR-Ship-Dataset1horizontal BBRemote SensingLinkSAR Ship
SSDD1horizontal BBBIGSARDATABaidu Drive (fyh0)SAR Ship
SSDD+1oriented BB-Baidu Drive (oh6x)SAR Ship
AIR-SARShip-1.01horizontal BB雷达学报LinkSAR Ship
HRSID1instance-LinkSAR Ship
HRSC20164oriented BBICPRBaidu Drive (rfg6)Ship
FGSD4oriented BBarXiv:2003.06832-Ship
FGSD202120oriented BBarXiv:2101.11189-Ship
DLR-3K2oriented BBGRSLBaidu Drive (bh71)Vehicle
VEDAI9oriented BBJVCIRLinkVehicle
COWC1one dotECCV2016LinkVehicle
UVSD1instanceRemote SensingLinkVehicle
EAGLE2oriented BBarXiv:2007.06124LinkVehicle
RarePlanes1 to 110instancearXiv:2006.02963LinkPlane

For more remote sensing datasets of different research directions, please visit here.

### 农业遥感数据集相关资源 农业遥感数据集对于研究作物监测、土地利用分析以及环境变化等方面具有重要意义。以下是几个重要的开源农业遥感数据集及其下载网站的信息: #### 1. **CropHarvest** CropHarvest 是一个专注于农业领域的开源遥感数据集项目,能够为用户提供丰富的农业遥感数据支持[^1]。该平台不仅包含了多种类型的遥感数据,还提供了一整套工具链来辅助数据分析和处理。用户可以通过其 GitHub 页面访问并下载所需的数据。 #### 2. **飞桨(PaddlePaddle)相关数据集** 百度飞桨提供了多个与农业相关数据集,涵盖了农作物生长情况、病虫害识别等领域。这些数据集可以用于训练深度学习模型,解决实际农业生产中的问题。具体包括但不限于以下几个方面: - 天宫遥感图像自然场景智能识别数据集 - 农业病虫害数据集 - 农作物图像数据集 更多详情可参考飞桨官网提供的数据集列表[^2]。 #### 3. **其他公开遥感数据集汇总** 除了上述提到的专门针对农业的应用外,还有一些综合性的遥感数据集也适用于农业研究。例如: - **黑鸟无人机数据集**:主要用于无人机拍摄下的农田区域目标检测。 - **全国各省12.5米高程数据**:可用于地形对作物种植影响的研究。 - **遥感 SAR 目标检测大规模数据集**:适合于合成孔径雷达成像技术下田间结构特征提取的任务。 以上信息来源于知乎上关于遥感影像数据集的文章整理。 #### 4. **学术论文关联资料** 一篇发表在《Remote Sensing of Environment》上的文章探讨了如何利用全卷积网络(FCN)结合组合分组方法从小农户农场卫星图片中描绘出农业地块边界[^4]。虽然这篇文献本身不是直接指向某个特定数据库链接,但它展示了现代机器学习算法应用于此类挑战的技术路径,并可能提及了一些实验所使用的公共可用素材作为案例说明。 综上所述,在寻找合适的农业遥感数据集时可以从 CropHarvest 这样的专项工程入手;同时也可以查阅由社区维护或者商业机构发布的各类专题合辑;最后还可以关注科研成果里披露的具体实例材料以获得更多灵感启发。 ```python import requests def fetch_dataset(url): response = requests.get(url) if response.status_code == 200: with open('dataset.zip', 'wb') as file: file.write(response.content) print("Dataset downloaded successfully.") else: print("Failed to download dataset.") fetch_dataset("https://github.com/CropHarvest/data/archive/refs/heads/main.zip") # Example URL for downloading CropHarvest data. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值