反向传播notes

谁敢相信我马上要秋招了且有两段算法实习到现在才算真的理解透彻反向传播,这世界就是个巨大的ctbz…

首先理解链式法则,假设有两个可微的函数f(x)f(x)f(x)g(x)g(x)g(x)h(x)=f(g(x))h(x)=f(g(x))h(x)=f(g(x)),记u=g(x)u=g(x)u=g(x),f(u)=h(x)f(u)=h(x)f(u)=h(x),则∂h(x)∂x=∂f(u)∂u∂g(x)∂x\frac{\partial h(x)}{\partial x}=\frac{\partial f(u)}{\partial u}\frac{\partial g(x)}{\partial x}xh(x)=uf(u)xg(x).
复合函数的导数可以逐步分解求导再相乘,而神经网络里的基本单元就是线性层+激活函数,假设输入x有两层网络:z1=W1x+b1,a1=σ(z1)z^1=W^1x+b^1,a^1=\sigma(z^1)z1=W1x+b1,a1=σ(z1)
z2=W2a1+b2,a2=σ(z2)z^2=W^2a^1+b^2,a^2=\sigma(z^2)z2=W2a1+b2,a2=σ(z2)
最终输出ypred=a2y^{pred}=a^2ypred=a2,定义损失函数为MSE,L=12(ypred−y)2L=\frac12(y^{pred}-y)^2L=21(ypredy)2yyy是label,有∂L∂ypred=ypred−y\frac{\partial L}{\partial y^{pred}}=y^{pred}-yypredL=ypredy
初始随机化参数,梯度下降更新参数值,有W2=W2−α∂L∂W2W^2=W^2-\alpha\frac{\partial L}{\partial W^2}W2=W2αW2L∂L∂W2=∂L∂ypred∂ypred∂z2∂z2∂W2=(ypred−y)σ′(z2)a1\frac{\partial L}{\partial W^2}=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial W^2}=(y^{pred}-y)\sigma'(z^2)a^1W2L=ypredLz2ypredW2z2=(ypredy)σ(z2)a1,依次更新反向传播。
∂L∂b2=∂L∂ypred∂ypred∂z2∂z2∂b2=(ypred−y)σ′(z2)\frac{\partial L}{\partial b^2}=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial b^2}=(y^{pred}-y)\sigma'(z^2)b2L=ypredLz2ypredb2z2=(ypredy)σ(z2)
∂L∂b1=∂L∂ypred∂ypred∂z2∂z2∂a1∂a1∂z1∂z1∂b1=(ypred−y)σ′(z2)W2σ′(z1)\frac{\partial L}{\partial b^1}=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial a^1}\frac{\partial a^1}{\partial z^1}\frac{\partial z^1}{\partial b^1}=(y^{pred}-y)\sigma'(z^2)W^2\sigma'(z^1)b1L=ypredLz2ypreda1z2z1a1b1z1=(ypredy)σ(z2)W2σ(z1)
∂L∂W1=∂L∂ypred∂ypred∂z2∂z2∂a1∂a1∂z1∂z1∂W1=(ypred−y)σ′(z2)W2σ′(z1)x\frac{\partial L}{\partial W^1}=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial a^1}\frac{\partial a^1}{\partial z^1}\frac{\partial z^1}{\partial W^1}=(y^{pred}-y)\sigma'(z^2)W^2\sigma'(z^1)xW1L=ypredLz2ypreda1z2z1a1W1z1=(ypredy)σ(z2)W2σ(z1)x

实现代码

import numpy as np

class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size

        # Initialize weights
        self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size)
        self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size)

        # Initialize the biases
        self.bias_hidden = np.zeros((1, self.hidden_size))
        self.bias_output = np.zeros((1, self.output_size))

    def sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

    def sigmoid_derivative(self, x):
        return x * (1 - x)

    def feedforward(self, X):
        # Input to hidden
        self.hidden_activation = np.dot(X, self.weights_input_hidden) + self.bias_hidden
        self.hidden_output = self.sigmoid(self.hidden_activation)

        # Hidden to output
        self.output_activation = np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output
        self.predicted_output = self.sigmoid(self.output_activation)

        return self.predicted_output

    def backward(self, X, y, learning_rate):
        # Compute the output layer error
        output_error = y - self.predicted_output
        output_delta = output_error * self.sigmoid_derivative(self.predicted_output)

        # Compute the hidden layer error
        hidden_error = np.dot(output_delta, self.weights_hidden_output.T)
        hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_output)

        # Update weights and biases
        self.weights_hidden_output += np.dot(self.hidden_output.T, output_delta) * learning_rate
        self.bias_output += np.sum(output_delta, axis=0, keepdims=True) * learning_rate
        self.weights_input_hidden += np.dot(X.T, hidden_delta) * learning_rate
        self.bias_hidden += np.sum(hidden_delta, axis=0, keepdims=True) * learning_rate

    def train(self, X, y, epochs, learning_rate):
        for epoch in range(epochs):
            output = self.feedforward(X)
            self.backward(X, y, learning_rate)
            if epoch % 4000 == 0:
                loss = np.mean(np.square(y - output))
                print("Epoch{epoch}, Loss:{loss}")

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

nn = NeuralNetwork(input_size=2, hidden_size=4, output_size=1)
nn.train(X, y, epochs=10000, learning_rate=0.1)

# Test the trained model
output = nn.feedforward(X)
print(output)

函数求导的转置变换

默认为列向量,输入为 x∈Rdinx \in \mathbb{R}^{d_{\text{in}}}xRdin,第一层权重 W1∈Rd1×dinW^1 \in \mathbb{R}^{d_{1} \times d_{\text{in}}}W1Rd1×din,第二层权重 W2∈Rd2×d1W^2 \in \mathbb{R}^{d_{2} \times d_{1}}W2Rd2×d1,偏置 b1∈Rd1b^1 \in \mathbb{R}^{d_{1}}b1Rd1b2∈Rd2b^2 \in \mathbb{R}^{d_{2}}b2Rd2。非线性层逐元素乘,线性层矩阵乘。
前向传播:
z1=W1x+b1,a1=σ(z1)z^1=W^1x+b^1,a^1=\sigma(z^1)z1=W1x+b1,a1=σ(z1)
z2=W2a1+b2,a2=σ(z2)z^2=W^2a^1+b^2,a^2=\sigma(z^2)z2=W2a1+b2,a2=σ(z2)
z1∈Rd1z^1 \in \mathbb{R}^{d_{1}}z1Rd1a1∈Rd1a^1 \in \mathbb{R}^{d_{1}}a1Rd1z2∈Rd2z^2 \in \mathbb{R}^{d_{2}}z2Rd2a2∈Rd2a^2 \in \mathbb{R}^{d_{2}}a2Rd2

反向传播有ypred=a2y^{pred}=a^2ypred=a2,定义损失函数为MSE,L=12(ypred−y)2L=\frac12(y^{pred}-y)^2L=21(ypredy)2yyy是label,有∂L∂ypred=ypred−y\frac{\partial L}{\partial y^{pred}}=y^{pred}-yypredL=ypredyW2=W2−α∂L∂W2W^2=W^2-\alpha\frac{\partial L}{\partial W^2}W2=W2αW2L,维度Rd2×d1\mathbb{R}^{d_{2} \times d_{1}}Rd2×d1
∂L∂W2=∂L∂ypred∂ypred∂z2∂z2∂W2=[(ypred−y)⊙σ′(z2)](a1)T∈Rd2×1×R1×d1\begin{align*} \frac{\partial L}{\partial W^2}&=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial W^2}\\ &=\left[(y^{pred}-y) \odot \sigma'(z^2)\right] (a^1)^T \in \mathbb{R}^{d_{2}\times 1}\times \mathbb{R}^{1 \times d_{1}}\end{align*}W2L=ypredLz2ypredW2z2=[(ypredy)σ(z2)](a1)TRd2×1×R1×d1

∂L∂b2=∂L∂ypred∂ypred∂z2∂z2∂b2=[(ypred−y)⊙σ′(z2)]∈Rd2\begin{align*} \frac{\partial L}{\partial b^2}&=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial b^2}\\ &=\left[(y^{pred}-y) \odot \sigma'(z^2)\right] \in \mathbb{R}^{d_{2}}\end{align*}b2L=ypredLz2ypredb2z2=[(ypredy)σ(z2)]Rd2

∂L∂b1=∂L∂ypred∂ypred∂z2∂z2∂a1∂a1∂z1∂z1∂b1=[(W2)T[(ypred−y)⊙σ′(z2)]]⊙σ′(z1)∈Rd1×d2×Rd2×1 \begin{align*} \frac{\partial L}{\partial b^1}&=\frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial a^1}\frac{\partial a^1}{\partial z^1}\frac{\partial z^1}{\partial b^1}\\ &=[{(W^2)}^T \left[(y^{pred}-y) \odot \sigma'(z^2)\right]] \odot \sigma'(z^1) \\ &\in \mathbb{R}^{d_{1} \times d_{2}} \times \mathbb{R}^{d_{2}\times 1} \end{align*}b1L=ypredLz2ypreda1z2z1a1b1z1=[(W2)T[(ypredy)σ(z2)]]σ(z1)Rd1×d2×Rd2×1

∂L∂W1=∂L∂ypred∂ypred∂z2∂z2∂a1∂a1∂z1∂z1∂W1=[(W2)T[(ypred−y)⊙σ′(z2)]]⊙σ′(z1)xT∈Rd1×d2×Rd2×1×R1×din \begin{align*} \frac{\partial L}{\partial W^1} &= \frac{\partial L}{\partial y^{pred}}\frac{\partial y^{pred}}{\partial z^2}\frac{\partial z^2}{\partial a^1}\frac{\partial a^1}{\partial z^1}\frac{\partial z^1}{\partial W^1} \\ &= [{(W^2)}^T \left[(y^{pred}-y) \odot \sigma'(z^2)\right] ]\odot \sigma'(z^1) x^T \\ &\in \mathbb{R}^{d_{1} \times d_{2}} \times \mathbb{R}^{d_{2}\times 1} \times \mathbb{R}^{1 \times d_{in}} \end{align*} W1L=ypredLz2ypreda1z2z1a1W1z1=[(W2)T[(ypredy)σ(z2)]]σ(z1)xTRd1×d2×Rd2×1×R1×din

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值