棋盘效应(checkerboard artifacts)学习笔记

本文探讨了深度卷积神经网络中的棋盘效应问题,特别是在反卷积过程中的上采样机制导致这一现象的原因及其对网络训练的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

    假设反卷积生成的图像中,包含1只黑猫,黑猫身体部分的像素颜色应该是平滑过渡的。或者极端的说,身体部分应该全部都是黑色的。而在实际生成的图像中,该部分却是由深深浅浅的近黑方块组成的,很像棋盘的网络。这就是所谓的棋盘效应。

 

       现在显著性检测还存在的一个问题就是,在像素级的视觉任务中,会出现这个棋盘效应。这个效应在深度卷积神经网络中的影响是很大的。比如:如果在FCN的输出中出现这个效应,那么这个网络的训练就有可能失败,并且结果完全错误。

 

 

 

        而这些效应出现的源头就是上采样机制,一般出现在反卷积中。就是在反卷积过程中,当卷积核大小不能被步长整除时,反卷积就会出现重叠问题,插零的时候,输出结果会出现一些数值效应,就像棋盘一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值