【斜率DP】BZOJ 1010:玩具装箱

本文介绍HNOI2008玩具装箱问题的解决方案,通过预处理前缀和,利用队列维护凸函数实现O(1)转移,最终求得最小费用。

1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7537  Solved: 2888
[Submit][Status][Discuss]

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

  很久没有写过BLOG了的说..
  
  最近在学各种DP系列,比较无聊所以来写几发题解吧。
 
  首先转化问题。
  
  我们发现选j+1-i的所有玩具装一箱要(i-j-1+Sigma(Ck) -L)^2
 
  相当于(sum[i]-sum[j]+i-j-1-L)^2.
 
  所以我们预处理前缀和什么的,然后设s[i]=sum[i]+i,m[i]=s[i]-1-L.
  
  然后答案就是(m[i]-s[j])^2.
 
  而转移应该很简单:f[i]=min(f[j]+(m[i]-s[j])^2).
  
  但是这样的转移还是需要O(n^2)。
  我们需要优化。
 
  我们先假设决策j是要好于k的。
  则有
 
  
  
  然后可以用队列维护一个凸性的函数。
  
  O(1)转移。
 
  
  
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<cmath>
 5 #include<queue>
 6 
 7 #define maxn 50001
 8 
 9 using namespace std;
10 
11 long long sum[maxn],M[maxn],f[maxn];
12 
13 int n,L,que[50001],head=1,tail=1;
14 
15 double K(int x,int y){return ((double)f[x]+sum[x]*sum[x]-f[y]-sum[y]*sum[y])/(double)(sum[x]-sum[y])*1.0;}
16 
17 void DP()
18 {
19     for(int i=1;i<=n;i++)
20     {
21         while(head<tail&&K(que[head],que[head+1])<=2*M[i])head++;
22         int sb=que[head];
23         f[i]=f[sb]+(M[i]-sum[sb])*(M[i]-sum[sb]);
24         while(head<tail&&K(que[tail],i)<=K(que[tail-1],que[tail]))tail--;
25         que[++tail]=i;
26     }
27     printf("%lld",f[n]);
28 }
29 
30 int main()
31 {
32     freopen("1010.in","r",stdin);
33     scanf("%d%d",&n,&L);
34     for(int i=1;i<=n;i++)
35         scanf("%lld",&sum[i]),sum[i]+=sum[i-1]+1,M[i]=sum[i]-L-1;
36     DP();
37     return 0;
38 }
View Code

 

【激光质量检测】利用丝杆与步进电机的组合装置带动光源的移动,完成对光源使用切片法测量其光束质量的目的研究(Matlab代码实现)内容概要:本文研究了利用丝杆与步进电机的组合装置带动光源移动,结合切片法实现对激光光源光束质量的精确测量方法,并提供了基于Matlab的代码实现方案。该系统通过机械装置精确控制光源位置,采集不同截面的光强分布数据,进而分析光束的聚焦特性、发散角、光斑尺寸等关键质量参数,适用于高精度光学检测场景。研究重点在于硬件控制与图像处理算法的协同设计,实现了自动化、高重复性的光束质量评估流程。; 适合人群:具备一定光学基础知识和Matlab编程能力的科研人员或工程技术人员,尤其适合从事激光应用、光电检测、精密仪器开发等相关领域的研究生及研发工程师。; 使用场景及目标:①实现对连续或脉冲激光器输出光束的质量评估;②为激光加工、医疗激光、通信激光等应用场景提供可靠的光束分析手段;③通过Matlab仿真与实际控制对接,验证切片法测量方案的有效性与精度。; 阅读建议:建议读者结合机械控制原理与光学测量理论同步理解文档内容,重点关注步进电机控制逻辑与切片数据处理算法的衔接部分,实际应用时需校准装置并优化采样间距以提高测量精度。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值