For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we’ll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
string s;
cin >> s;
s.insert(0, 4 - s.size(), '0');
do {
sort(s.begin(), s.end(), greater<char>());
string max_number = s;
sort(s.begin(), s.end(), less<char>());
string min_number = s;
int result = stoi(max_number) - stoi(min_number);
s = to_string(result);
s.insert(0, 4 - s.size(), '0');
cout << max_number << " - " << min_number << " = " << s << endl;
if (!result)
break;
} while (s != "6174");
return 0;
}
882

被折叠的 条评论
为什么被折叠?



