HDU 4786 Fibonacci Tree 斐波那契树

本文深入探讨了特定技术领域的算法应用,包括但不限于数据结构、算法、深度学习等核心内容,通过具体案例展示了这些技术如何在实际问题解决中发挥关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 975    Accepted Submission(s): 289


Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 

Input
  The first line of the input contains an integer T, the number of test cases.
  For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5).
  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 

Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 

Sample Input
   
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
 

Sample Output
   
Case #1: Yes Case #2: No
 

Source

给你一个图,每条边有两种颜色黑色或者白色,让你判断存不存在一棵生成树,使得白边的数量为斐波那契数。
分别求出白边在生成树中的最大值和最小值,用生成树思想来做。当然如果图不是连通图的话,则肯定输出No。然后判断在这个最大最小之间存不存斐波那契数,如果存在则Yes,否则No。因为在这个区间内总能找到一条白边可以用黑边来代替。
//625MS	1772K
#include<stdio.h>
#include<string.h>
int f[107]= {0,1};
int pre[100007];
int n,m,k;
struct E
{
    int u,v,c;
} edg[100007];
void fib()
{
    for(k=2;; k++)
    {
        f[k]=f[k-1]+f[k-2];
        if(f[k]>100000)break;
    }
}
void init()
{
    for(int i=0; i<=n; i++)
        pre[i]=i;
}
int find(int x)//路径压缩,否则很容易tle
{
    int root=x;
    while(root!=pre[root])
    {
        root=pre[root];
    }
    while(x!=root)
    {
        int temp=pre[x];
        pre[x]=root;
        x=temp;
    }
    return root;
}

int main()
{
    int t,cas=1;
    fib();
    scanf("%d",&t);
    while(t--)
    {
        int count=0;
        scanf("%d%d",&n,&m);
        for(int i=0; i<m; i++)
            scanf("%d%d%d",&edg[i].u,&edg[i].v,&edg[i].c);
        init();
        printf("Case #%d: ",cas++);
        for(int i=0; i<m; i++)//判断是不是连通图
        {
            int a=find(edg[i].u);
            int b=find(edg[i].v);
            if(a!=b)
            {
                pre[a]=b;
                count++;
            }
        }
        if(count!=n-1)
        {
            printf("No\n");
            continue;
        }
        init();
        int maxx=0,minn=0;
        for(int i=0; i<m; i++)//求白边的最大数量
            if(edg[i].c==1)
            {
                int a=find(edg[i].u);
                int b=find(edg[i].v);
                if(a!=b){pre[a]=b,maxx++;}
            }
       init();
       for(int i=0; i<m; i++)//求黑边最大数量
            if(edg[i].c==0)
            {
                int a=find(edg[i].u);
                int b=find(edg[i].v);
                if(a!=b){pre[a]=b,minn++;}
            }
        minn=n-1-minn;//求白边最小数量
        int flag=0;
        for(int i=1; i<k; i++)//在最大最小范围内,判断是否存在斐波那契数
        {
            if(f[i]>=minn&&f[i]<=maxx)
            {
                flag=1;
                break;
            }
        }
        if(flag)printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值