一个完整的分类模型
from keras.layers import Input, Dense
from keras.models import Model
# This returns a tensor
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
# This creates a model that includes
# the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels) # starts training
基于多层感知机的softmax多分类
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(
Keras深度学习入门:构建分类模型

这篇博客介绍了如何使用Keras构建一个完整的分类模型,涵盖了基于多层感知机的softmax多分类以及MLP的二分类方法,同时也探讨了卷积分类的应用。
最低0.47元/天 解锁文章
3102

被折叠的 条评论
为什么被折叠?



