具体学习参考https://blog.youkuaiyun.com/sunmaoxiang/article/details/80959300#commentBox
这篇博客也是我觉得比较好理解的方法——向量法,具体体现在代码。
hdu 3038 区间和悖论问题
假如说区间【fx,x】是之前建立的区间,他们之间和为sum[x],fx和x的联系可以用集合来存储,同理【fy,y】也是如此。当给出了一个新的区间【x,y】时,且区间和为s。就产生了两种情况了,如果fx == fy 那么这两个区间是有关联的区间,也就是【x,y】之间的和是可以求出的。可以把这个图看成一个向量。 区间【x,y】的和就是可以写成sum[x] - sum[y]。判断给出的s与向量法计算的区间和是否相等就可以判断是否是悖论。
当然如果fx != fy就需要建议新的区间关系。首先将fy指向fx,这代表fx是区间的左端点,计算sum【fy】= sum【x】- sum【y】+ s;这里同样用的是向量法。
这样建立联系与判断悖论都可以表达了,接下来就是一些细节了,比如在更新区间的时候要进行路径的压缩,压缩的过程中需要对权值进行更新,目的是使每个已知区间最大化。
#include<iostream>
using