一、数字信号处理基础
线性
T[ax1(t)+bx2(t)]=aT[x1(t)]+bT[x2(t)]T[ax_1(t)+bx_2(t)]=aT[x_1(t)]+bT[x_2(t)]T[ax1(t)+bx2(t)]=aT[x1(t)]+bT[x2(t)]
时不变性
y(t)=T[x(t)]y(t)=T[x(t)]y(t)=T[x(t)]
y(t−t0)=T[x(t−t0)]y(t-t_0)=T[x(t-t_0)]y(t−t0)=T[x(t−t0)]
连续卷积
f(t)=f1(t)⊗f2(t)=∫−∞∞f1(τ)f2(t−τ)dτf(t)=f_1(t)\otimes f_2(t) \\=\int_{-\infty}^{\infty}f_1(\tau)f_2(t-\tau)d\tauf(t)=f1(t)⊗f2(t)=∫−∞∞f1(τ)f2(t−τ)dτ
离散卷积
f(k)=f1(k)⊗f2(k)=∑i=−∞∞f1(i)f2(k−i)f(k)=f_1(k)\otimes f_2(k) \\=\sum_{i=-\infty}^{\infty}f_1(i)f_2(k-i)f(k)=f1(k)⊗f2(k)=i=−∞∑∞f1(i)f2(k−i)
拉普拉斯变换
X(s)=∫−xxx(t)e−stdtX(s)=\int_{-x}^{x}x(t)e^{-st}dtX(s)=∫−xxx(t)e−stdt
傅里叶变换
X(jω)=∫−xxx(t)e−jωtdtX(j\omega)=\int_{-x}^{x}x(t)e^{-j\omega t}dtX(jω)=∫−xxx(t)e−jωtdt
Z变换
X(z)=∑n=−∞∞x(n)z−nX(z)=\sum_{n=-\infty}^{\infty}x(n)z^{-n}X(z)=n=−∞∑∞x(n)z−n
DTFT
X(ejω)=∑n=−∞∞x(n)e−jωnX(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n}X(ejω)=n=−∞∑∞x(n)e−jωn
DFT
X(k)=∑n=0N−1x(n)e−j2πknNX(k)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi kn}{N}}X(k)=n=0∑N−1x(n)e−jN2πkn
二、语音信号的数学模型
语音信号模型可以由声门脉冲模型G(z)G(z)G(z)、声道模型V(z)V(z)V(z)和口唇辐射模型R(z)R(z)R(z)组成。
声门脉冲模型
G(z)=1(1−g1z−1)(1−g2z−1)G(z)=\frac{1}{(1-g_1z^{-1})(1-g_2z^{-1})}G(z)=(1−g1z−1)(1−g2z−1)1
声道模型
V(z)=1∑i=0pαiziV(z)=\frac{1}{\sum_{i=0}^{p}\alpha_iz^i}V(z)=∑i=0pαizi1
传递函数可以写为
H(z)=G(z)V(z)R(z)H(z)=G(z)V(z)R(z)H(z)=G(z)V(z)R(z)