基于模拟退火算法求解车辆路径规划问题
车辆路径规划问题(Vehicle Routing Problem, VRP)作为一类经典的组合优化问题,涌现了不少求解算法。其中,模拟退火算法(Simulated Annealing, SA)作为一种基于概率的全局优化方法,在求解VRP问题中也有着广泛的应用。本文将使用matlab实现基于模拟退火算法的单中心VRP问题求解。
- VRP问题建模
VRP问题通常包含一个车队、若干顾客和一个仓库。每个顾客有一定的需求量,每辆车有一定的容量且行驶距离有限制,要求在满足所有顾客需求的前提下,使得路程最短,并且保证每个顾客都被车辆访问到。
在单中心VRP问题中,所有顾客都在同一个中心点周围分布,且仅有一辆车。因此,可以将问题转化为旅行商问题(Traveling Salesman Problem, TSP),即求解以仓库为起点和终点的哈密顿回路。
- 模拟退火算法
模拟退火算法是一种不断更新自变量的全局优化算法,其核心思想是通过接受不太优的解来跳出局部最优解,以避免在局部最优解处陷入。该算法以一定的概率接受恶化的解,并逐渐降低接受概率。模拟退火算法具有全局收敛性、跳出局部最优解的能力和对初始值不敏感等优点。
算法流程如下:
1)初始化:随机产生一个初始解x0