基于深度置信网络(DBN)的手写数字识别:使用MATLAB实现

173 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用MATLAB的深度学习工具箱,结合MINIST数据集,实现基于深度置信网络(DBN)的手写数字识别。详细过程包括数据集准备、模型构建、训练、测试及预测,旨在帮助读者理解和应用DBN进行图像分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度置信网络(DBN)的手写数字识别:使用MATLAB实现

手写数字识别是计算机视觉领域中的一个经典问题,它旨在通过对手写数字图像进行分析和分类,准确地识别出每个数字。深度置信网络(Deep Belief Networks,DBN)是一种深度学习模型,通过多层神经网络的堆叠和逐层训练,能够有效地解决手写数字识别问题。在本文中,我们将使用MATLAB实现基于DBN的手写数字识别,并提供相应的源代码。

首先,我们需要准备手写数字数据集。在这里,我们将使用经典的MINIST数据集作为示例。MINIST数据集包含了大量的手写数字图像,每张图像都标注有相应的数字。我们可以从公共数据集库或者MINIST官方网站上下载该数据集,并将其解压到本地。

接下来,我们将使用MATLAB中的深度学习工具箱来构建和训练DBN模型。下面是一段MATLAB代码,展示了如何使用DBN对MINIST数据集进行手写数字识别。

% 步骤1:加载和准备数据集
data = load(
Code provided by Ruslan Salakhutdinov and Geoff Hinton Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the original programs are available from our web page. The programs and documents are distributed without any warranty, express or implied. As the programs were written for research purposes only, they have not been tested to the degree that would be advisable in any important application. All use of these programs is entirely at the user's own risk. How to make it work: 1. Create a separate directory and download all these files into the same directory 2. Download from http://yann.lecun.com/exdb/mnist the following 4 files: o train-images-idx3-ubyte.gz o train-labels-idx1-ubyte.gz o t10k-images-idx3-ubyte.gz o t10k-labels-idx1-ubyte.gz 3. Unzip these 4 files by executing: o gunzip train-images-idx3-ubyte.gz o gunzip train-labels-idx1-ubyte.gz o gunzip t10k-images-idx3-ubyte.gz o gunzip t10k-labels-idx1-ubyte.gz If unzipping with WinZip, make sure the file names have not been changed by Winzip. 4. Download Conjugate Gradient code minimize.m 5. Download Autoencoder_Code.tar which contains 13 files OR download each of the following 13 files separately for training an autoencoder and a classification model: o mnistdeepauto.m Main file for training deep autoencoder o mnistclassify.m Main file for training classification model o converter.m Converts raw MNIST digits into matlab format o rbm.m Training RBM with binary hidden and binary visible units o rbmhidlinear.m Training RBM with Gaussian hidden and binary visible units o backprop.m Backpropagation for fine-tuning an autoencoder o backpropclassify.m Backpropagation for classification using "encoder" network o CG_MNIST.m Conjugate Gradient optimization for fine-tuning an autoencoder o CG_CLASSIFY_INIT.m Co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值