灵梦的计算器,Loj6690,数学?

本文介绍了一种利用牛顿迭代法高效求解特定形式函数的方法。通过构造函数和使用一次牛顿迭代,可以精确求得在给定条件下的函数值。文章提供了完整的C++代码实现,包括随机数生成、参数读取和迭代过程。

正题

      Portal

      构造一个函数:f(x)=x^a+x^b,可以打表发现当\Delta y =1时,\Delta x其实很小很小。

      所以我们可以直接用一次牛顿迭代来求出y=n+1,y=n\Delta x

      具体的来说\Delta y\approx dy=f'(x)\Delta(x)

      那么\Delta n'=\frac{1}{f'(n)}.

      可以证明误差不大。

#include<bits/stdc++.h>
using namespace std;

namespace Mker
{
//  Powered By Kawashiro_Nitori
//  Made In Gensokyo, Nihon
	#define uint unsigned int
	uint sd;int op;
	inline void init() {scanf("%u %d", &sd, &op);}
	inline uint uint_rand()
	{
		sd ^= sd << 13;
		sd ^= sd >> 7;
		sd ^= sd << 11;
		return sd;
	}
	inline double get_n()
	{
		double x = (double) (uint_rand() % 100000) / 100000;
		return x + 4;
	}
	inline double get_k()
	{
		double x = (double) (uint_rand() % 100000) / 100000;
		return (x + 1) * 5;
	}
	inline void read(double &n,double &a, double &b)
	{
		n = get_n(); a = get_k();
		if (op) b = a;
		else b = get_k(); 
	}
}

int T;
double n,a,b;

int main(){
	scanf("%d",&T);
	Mker::init();
	double ans=0.000000;
	while(T--){
		Mker::read(n,a,b);
		ans+=1.0/(a*pow(n,a-1)+b*pow(n,b-1));
	}
	printf("%.8lf\n",ans);
}

 

**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
06-21
<think>我们正在查询与LOJ6279相关的编程题目或解决方案。LOJ(LibreOJ)是一个在线的评测系统,主要收录算法竞赛题目。根据题号6279,我们需要确定该题目的具体内容。由于我无法直接访问网络,我将基于已知信息进行推理。在算法竞赛中,LOJ的题目编号通常与特定的题目对应。题号6279可能对应一个特定的问题。根据常见的题目类型,我们可以推测它可能涉及数据结构或算法。然而,为了准确回答,我们可以尝试回忆或推断常见的LOJ题目。例如,LOJ6000系列题目多为数据结构题,如线段树、树状数组等。实际上,通过搜索记忆,我回想起LOJ6279是“数列分块入门3”(BlockArray3)题目。这是“分块”系列题目中的一题。题目描述:给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(即最大的小于x的数)。因此,用户需要的是关于LOJ6279题目的描述和解决方案。解决方案:由于题目要求分块处理,我们将数列分成若干块,每块大小为sqrt(n)。对于每个块,我们维护一个有序的数组(用于二分查找)以及一个加法标记(记录整个块被加了多少)。操作:1.区间加法:对于整块,直接更新加法标记;对于不完整的块,暴力更新元素值,然后重新排序该块(或者重新构建有序数组)。2.查询区间内小于x的前驱:遍历区间内的所有块。对于整块,在块的有序数组中二分查找小于(x-加法标记)的最大值;对于不完整的块,暴力遍历每个元素,判断是否小于x(注意加上加法标记)并更新最大值。代码实现(C++)示例:```cpp#include<iostream>#include<vector>#include<cmath>#include<algorithm>#include<climits>usingnamespacestd;constintMAXN=100010;constintBLOCK_SIZE=320;//约sqrt(MAXN)intn;vector<int>a;vector<int>block_add;//每块的加法标记vector<vector<int>>sorted_blocks;//每块的有序数组voidinit(){intblock_num=(n+BLOCK_SIZE-1)/BLOCK_SIZE;block_add.assign(block_num,0);sorted_blocks.resize(block_num);for(inti=0;i<n;i++){sorted_blocks[i/BLOCK_SIZE].push_back(a[i]);}for(inti=0;i<block_num;i++){sort(sorted_blocks[i].begin(),sorted_blocks[i].end());}}voidupdate_block(intblock_id){sorted_blocks[block_id].clear();intstart=block_id*BLOCK_SIZE;intend=min((block_id+1)*BLOCK_SIZE,n);for(inti=start;i<end;i++){sorted_blocks[block_id].push_back(a[i]);}sort(sorted_blocks[block_id].begin(),sorted_blocks[block_id].end());}voidadd(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;if(block_l==block_r){for(inti=l;i<=r;i++){a[i]+=c;}update_block(block_l);}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){a[i]+=c;}update_block(block_l);for(inti=block_l+1;i<block_r;i++){block_add[i]+=c;}for(inti=block_r*BLOCK_SIZE;i<=r;i++){a[i]+=c;}update_block(block_r);}}intquery(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;intans=-1;if(block_l==block_r){for(inti=l;i<=r;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}for(inti=block_l+1;i<block_r;i++){//在块i的有序数组中二分查找小于c-block_add[i]的最大值inttarget=c-block_add[i];autoit=lower_bound(sorted_blocks[i].begin(),sorted_blocks[i].end(),target);if(it!=sorted_blocks[i].begin()){it--;intval=*it+block_add[i];if(val>ans)ans=val;}}for(inti=block_r*BLOCK_SIZE;i<=r;i++){intval=a[i]+block_add[block_r];if(val<c){if(val>ans)ans=val;}}}returnans;}intmain(){cin>>n;a.resize(n);for(inti=0;i<n;i++){cin>>a[i];}init();for(inti=0;i<n;i++){intop,l,r,c;cin>>op>>l>>r>>c;l--;r--;//如果题目输入是1-indexed,则转换为0-indexedif(op==0){add(l,r,c);}else{cout<<query(l,r,c)<<endl;}}return0;}```注意:上述代码是示例代码,可能需要根据题目具体输入要求进行调整。§§相关问题§§1.LOJ6279题目的具体描述是什么?2.分块算法的时间复杂度是多少?3.除了分块,还有哪些方法可以解决LOJ6279?4.如何优化分块算法的常数?5.分块算法适用于哪些场景?</think>### LOJ 6279 题目分析与解决方案 **题目描述**:LOJ 6279 是 LibreOJ 上的 **"数列分块入门 3"**,属于分块算法的经典练习题。核心要求如下: - **操作 1**:区间 $[l, r]$ 内每个数加上值 $c$ - **操作 2**:查询区间 $[l, r]$ 内小于 $c$ 的**最大元素值**(即前驱),不存在时返回 $-1$ #### 分块算法设计 分块的核心思想是将数列划分为 $\sqrt{n}$ 大小的块,平衡暴力操作与批量处理。 ##### 关键数据结构 1. **块内有序数组**: - 每块维护一个排序后的数组,用于二分查找前驱。 - 示例:块 $B_i$ 的排序数组为 $S_i$。 2. **加法懒标记**: - 记录整块被加的总值 $add_i$(不影响块内有序性)。 ##### 操作实现 1. **区间加法($[l, r] + c$)**: - **整块**:直接更新懒标记 $add_i \gets add_i + c$,时间复杂度 $O(1)$。 - **碎块**:暴力修改元素值,并**重构有序数组**(排序),时间复杂度 $O(\sqrt{n} \log \sqrt{n})$。 2. **查询前驱($[l, r]$ 内 $< c$ 的最大值)**: - **整块**:在有序数组 $S_i$ 中二分查找 $c - add_i$ 的前驱,时间复杂度 $O(\log \sqrt{n})$。 - **碎块**:暴力遍历元素,检查 $a_j + add_i < c$ 并更新最大值,时间复杂度 $O(\sqrt{n})$。 #### 代码实现(C++) ```cpp #include <iostream> #include <vector> #include <cmath> #include <algorithm> #include <climits> using namespace std; const int MAXN = 100010; int n, block_size; vector<int> a; vector<int> add_tag; // 块的加法标记 vector<vector<int>> blocks; // 每块的有序数组 void init() { block_size = sqrt(n); int block_num = (n + block_size - 1) / block_size; add_tag.assign(block_num, 0); blocks.resize(block_num); for (int i = 0; i < n; i++) blocks[i / block_size].push_back(a[i]); for (int i = 0; i < block_num; i++) sort(blocks[i].begin(), blocks[i].end()); } void rebuild_block(int block_id) { blocks[block_id].clear(); int start = block_id * block_size; int end = min(start + block_size, n); for (int i = start; i < end; i++) blocks[block_id].push_back(a[i]); sort(blocks[block_id].begin(), blocks[block_id].end()); } void range_add(int l, int r, int c) { int block_l = l / block_size, block_r = r / block_size; if (block_l == block_r) { // 同一块内 for (int i = l; i <= r; i++) a[i] += c; rebuild_block(block_l); } else { // 左侧碎块 for (int i = l; i < (block_l + 1) * block_size; i++) a[i] += c; rebuild_block(block_l); // 中间整块 for (int i = block_l + 1; i < block_r; i++) add_tag[i] += c; // 右侧碎块 for (int i = block_r * block_size; i <= r; i++) a[i] += c; rebuild_block(block_r); } } int query_predecessor(int l, int r, int c) { int ans = -1; int block_l = l / block_size, block_r = r / block_size; // 左侧碎块暴力查询 for (int i = l; i < min(r + 1, (block_l + 1) * block_size); i++) { int val = a[i] + add_tag[block_l]; if (val < c && val > ans) ans = val; } // 中间整块二分查找 for (int i = block_l + 1; i < block_r; i++) { int target = c - add_tag[i]; auto it = lower_bound(blocks[i].begin(), blocks[i].end(), target); if (it != blocks[i].begin()) { it--; int val = *it + add_tag[i]; if (val < c && val > ans) ans = val; } } // 右侧碎块暴力查询 if (block_l != block_r) { for (int i = block_r * block_size; i <= r; i++) { int val = a[i] + add_tag[block_r]; if (val < c && val > ans) ans = val; } } return ans; } int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) cin >> a[i]; init(); for (int i = 0; i < n; i++) { int op, l, r, c; cin >> op >> l >> r >> c; l--; r--; // 转为0-indexed if (op == 0) range_add(l, r, c); else cout << query_predecessor(l, r, c) << endl; } return 0; } ``` #### 算法分析 - **时间复杂度**: - 单次修改/查询:$O(\sqrt{n} \log \sqrt{n})$(碎块排序主导)。 - 总操作 $m$ 次:$O(m \sqrt{n} \log n)$。 - **空间复杂度**:$O(n)$。 #### 优化技巧 1. **减少排序次数**: - 碎块修改时只重构受影响块的有序数组。 2. **块大小调整**: - 实测调整块大小为 $n^{0.6}$ 可能更快(需测试)。 #### 应用场景 分块算法适用于**强制在线**的区间问题(如 LOJ 的数列分块系列题),在 $O(\sqrt{n})$ 复杂度下平衡修改与查询[^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值