刚刚,DeepSeek放出重磅论文!梁文锋亲自参与!

 Datawhale分享 

论文:梁文锋团队,编辑:AI寒武纪

就在马斯克发布grok3,sam altman 还在犹豫要不要开源时,刚刚梁文锋作为co-authors携deepseek研究团队丢出重磅研究论文成果,DeepSeek 发布了最新的研究成果——原生稀疏注意力(Native Sparse Attention, NSA)! 这项技术有望大幅提升下一代大语言模型处理长文本的能力,同时还能兼顾效率,可谓是 LLM 领域又一里程碑式的进展!

0ad12842828f2c80e4dfb309624f6df2.png

简单来说,论文的核心贡献如下:

LLM 长文本能力再突破!DeepSeek 发布原生稀疏注意力 NSA:硬件友好又高效,训推一体化!

废话不多说,我们一起来扒一扒这篇论文:

先了解一下论文的背景

近年来,我们见证了长文本建模在 AI 领域的重要性日益凸显。无论是深度推理、代码库生成、还是多轮对话,都离不开模型对长序列信息的有效处理能力。像 OpenAI 的 o-series 模型、DeepSeek-R1、以及 Google Gemini 1.5 Pro 等,都展现了处理超长文本的强大潜力。

然而,传统 Attention 机制的计算复杂度随着序列长度的增加而呈平方级增长,这成为了制约 LLM 发展的关键瓶颈。计算成本高昂,延迟成为问题, 如何在保证模型性能的同时,提升长文本处理的效率,成为了亟待解决的难题

稀疏注意力应运而生,它被认为是提升效率,同时维持模型能力的有希望的方向。DeepSeek 的 NSA 技术正是在这个方向上迈出了重要一步!

DeepSeek NSA:原生稀疏注意力,训推一体化,硬件友好

DeepSeek 提出的 NSA (Native Sparse Attention,原生稀疏注意力) 机制,巧妙地将算法创新与硬件优化相结合,旨在实现高效的长文本建模。

NSA 的核心亮点可以概括为以下两点:

1.动态分层稀疏策略: NSA 采用了一种动态分层的稀疏策略,结合了粗粒度的 Token 压缩 和 细粒度的 Token 选择。这种策略既能保证模型对全局上下文的感知,又能兼顾局部信息的精确性

2.两大关键创新:

算术强度平衡的算法设计与硬件优化: NSA 通过精巧的算法设计,并针对现代硬件进行了实现优化,显著提升了计算速度

端到端可训练: NSA 支持端到端训练,这意味着它不仅在推理阶段高效,还能减少预训练的计算量,同时不牺牲模型性能!

4ad9ea15f6c5c65afecdc499fe7e8cb0.png

💪 实验效果惊艳:性能不降反升,速度大幅提升!

实验结果令人振奋!如图 1 所示,在通用基准测试、长文本任务和指令推理方面,使用 NSA 预训练的模型性能不仅没有下降,反而超越了 Full Attention 模型!

更重要的是,在处理 64k 长度的序列时,NSA 在解码、前向传播和反向传播等各个阶段都实现了显著的速度提升,最高可达 11.6 倍! 这充分证明了 NSA 在模型生命周期各个阶段的效率优势

f6091c243a313b68f1705a297e89b547.png

🤔 现有稀疏注意力方法的局限性

论文也深入分析了现有稀疏注意力方法的局限性,主要体现在两个方面:

1.推理效率的“假象”: 很多方法虽然在理论上实现了稀疏计算,但在实际推理延迟方面提升有限。这主要是因为:

  • • 阶段限制的稀疏性: 例如,有些方法只在自回归解码时应用稀疏性,但在预填充阶段仍然需要大量计算

  • • 与先进 Attention 架构的不兼容性: 一些稀疏注意力方法难以适配像 MQA 和 GQA 这样的现代高效解码架构,导致内存访问瓶颈依然存在

2.可训练稀疏性的“神话”: 许多方法主要关注推理阶段的稀疏性,而忽略了训练阶段。这导致:

  • • 性能退化: 后验应用稀疏性可能导致模型偏离预训练的优化轨迹。

  • • 训练效率需求: 长序列训练对于提升模型能力至关重要,但现有方法在训练效率方面存在不足。

  • • 不可训练的组件: 一些方法引入了不可微的离散操作,阻碍了梯度传播,限制了模型学习最佳稀疏模式的能力。

  • • 反向传播效率低下: 一些理论上可训练的方法,在实际训练中效率低下,例如 Token 粒度的选择策略可能导致非连续的内存访问,影响硬件利用率。

🧩 NSA 的核心组件:分层稀疏,逐层优化

为了克服上述局限性,NSA 架构采用了分层 Token 建模,并通过三个并行的注意力分支处理输入序列:

  1. 1. 压缩注意力 (Compressed Attention): 处理粗粒度的模式,通过压缩 Token 块来捕获全局信息。

  2. 2. 选择注意力 (Selected Attention): 处理重要的 Token 块,选择性地保留细粒度的信息。

  3. 3. 滑动窗口注意力 (Sliding Window Attention): 处理局部上下文信息。

这三个分支的输出通过一个门控机制进行聚合。为了最大化效率,NSA 还专门设计了硬件优化的 Kernel

23bb2ae6ed4619cffb97889b260fb1ee.png

写在最后

DeepSeek 的 NSA 技术为长文本建模带来了新的突破。它不仅在性能上超越了传统的 Full Attention 模型,更在效率方面实现了显著的提升,尤其是在长序列场景下。NSA 的 硬件友好设计 和 训推一体化特性,使其在实际应用中更具优势,有望加速下一代 LLM 在长文本处理领域的应用落地。

这项研究无疑为稀疏注意力领域带来了新的思路和方向。未来,我们期待看到更多基于 NSA 技术的创新应用,共同推动 AI 技术的进步!

最后不得不在强调一下,梁文锋不仅是deepseek ceo,很明显他还在研究的最前沿参与研究,这是令我最震撼的,他不仅有管理能力,而且还真正的懂AI,deepseek前途无量

各路网友都在喊,这才是真正的OpenAI,😁

参考:

https://arxiv.org/pdf/2502.11089

图片一起“赞”三连

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
内容概要:本文围绕电力系统状态估计中的异常检测与分类展开,重点介绍基于Matlab代码实现的相关算法与仿真方法。文章详细阐述了在状态估计过程中如何识别和分类量测数据中的异常值,如坏数据、拓扑错误和参数误差等,采用包括残差分析、加权最小二乘法(WLS)、标准化残差检测等多种经典与现代检测手段,并结合实际算例验证方法的有效性。同时,文档提及多种状态估计算法如UKF、AUKF、EUKF等在负荷突变等动态场景下的应用,强调异常处理对提升电力系统运行可靠性与安全性的重要意义。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的高校研究生、科研人员及从事电力系【状态估计】电力系统状态估计中的异常检测与分类(Matlab代码实现)统自动化相关工作的工程技术人员。; 使用场景及目标:①掌握电力系统状态估计中异常数据的产生机制与分类方法;②学习并实现主流异常检测算法,提升对状态估计鲁棒性的理解与仿真能力;③服务于科研项目、课程设计或实际工程中的数据质量分析环节; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,配合电力系统状态估计的基本理论进行深入理解,重点关注异常检测流程的设计逻辑与不同算法的性能对比,宜从简单案例入手逐步过渡到复杂系统仿真。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值