「建模调参」之零基础入门数据挖掘

本文针对数据挖掘的建模与调参进行了详细讲解,包括模型选择、正则化、交叉验证等关键步骤。通过实例展示了线性回归、Lasso回归、Ridge回归等模型的使用,并探讨了贪心调参、GridSearchCV和贝叶斯调参等调参方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Datawhale 

作者:徐韬 ,Datawhale优秀学习者

摘要:对于数据挖掘项目,本文将学习如何建模调参?从简单的模型开始,如何去建立一个模型;如何进行交叉验证;如何调节参数优化等。

建模调参:特征工程也好,数据清洗也罢,都是为最终的模型来服务的,模型的建立和调参决定了最终的结果。模型的选择决定结果的上限, 如何更好的去达到模型上限取决于模型的调参。

数据及背景

https://tianchi.aliyun.com/competition/entrance/231784/information(阿里天池-零基础入门数据挖掘)

理论简介

模型调参基于特征工程所构建的模型上限来优化模型。由于模型的不同和复杂度,模型的参数数量也都不一样。线性模型需要调整正则化的系数,而对于非线性模型,例如随机森林和LGB等模型,需要调节的参数增多。

模型调参的目的就是提升模型的性能度量。对于回归算法,我们要降低模型在未知的数据上的误差;对于分类算法,我们要提高模型在未知数据上的准确率。

知识总结

回归分析

回归分析是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型。以便通过观察特定变量(自变量),来预测研究者感兴趣的变量(因变量)

一般形式:

向量形式:


其中 向量代表一条样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值