DataPipeline选择MQ模式,主要有几点考虑:
第一,在我们产品应用中有一个非常常见的场景:要做数据的一对多分发。数据要进行一次读取,然后分发到各种不同的目的地,这是一个非常适合消息队列使用的分发模型。
第二,有时会对一次读取的数据加不同的处理逻辑,我们希望这种处理不要重新对源端产生一次读取。所以在多数情况下,都需将数据先读到消息队列,然后再配置相应的处理逻辑。
第三,Kafka Connect就是基于MQ模式的,它有大量的开源连接器。基于Kafka Connect框架,我们可以重用这些连接器,节省研发的投入。
第四,当你把数据抽取跟写入目的地,从处理逻辑中独立出来之后,便可以提供更强大的集成能力。因为你可以在消息队列上集成更多的处理逻辑,而无需考虑重新写整个Job。
相应而言,如果你选择将MQ作为所有JOB的传输通道,就必须要克服几个缺点:
第一,所有数据的吞吐都经过MQ,所以MQ会成为一个吞吐瓶颈。
第二,因为是一个完全的流式架构,所以针对批量同步,你需要引入一些边界消息来实现一些批量控制。
第三,Kafka是一个有持久化能力的消息队列,这意味着数据留存是有极限的。比如,你将源端的读到Kafka Topic里面,Topic不会无限的大,有可能会造成数据容量超限,导致一些数据丢失。
第四,当批量同步在中间因为某种原因被打断,无法做续传时,你需要进行重传。在重传过程中,首先要将数据进行清理,如果基于消息队列模式,清理过程就会带来额外的工作。你会面临两个困境:要么清空原有的消息队列,要么你创造新的消息队列。这肯定不如像直接使用一些批量同步框架那样来的直接。