降维本质:学习一个映射函数f:x→y,x为原始数据点表达,y是数据点映射后的低维向量。映射函数可以是显示或隐式的、线性或非线性的。
主成分分析PCA算法:
SVD降维:奇异值分解(SVD)等价于PCA主成分分析。
非线性降维方法:
PCA基于线性降维,非线性处理方法有:核化线性降维(KPCA)、流形学习降维、多维缩放(MDS)降维、等度量映射降维(Isomp)、局部线性嵌入(LLE)
降维本质:学习一个映射函数f:x→y,x为原始数据点表达,y是数据点映射后的低维向量。映射函数可以是显示或隐式的、线性或非线性的。
主成分分析PCA算法:
SVD降维:奇异值分解(SVD)等价于PCA主成分分析。
非线性降维方法:
PCA基于线性降维,非线性处理方法有:核化线性降维(KPCA)、流形学习降维、多维缩放(MDS)降维、等度量映射降维(Isomp)、局部线性嵌入(LLE)