原理:Sn,Sn−1⇒an原理:S_{n},S_{n-1}\Rightarrow a_{n}原理:Sn,Sn−1⇒an
Q:a1=−1,Snn=2ann+1.求an.Q:a_{1}=-1,\dfrac {S_{n}}{n}=\dfrac {2a_{n}}{n}+1.求a_{n}.Q:a1=−1,nSn=n2an+1.求an.
A:an=−2n+1A:a_{n}=-2^{n}+1A:an=−2n+1
Q:a1=1,Sn=4−(1+2n)an.求an.Q:a_{1}=1,S_{n}=4-\left( 1+\dfrac {2}{n}\right) a_{n}.求a_{n}.Q:a1=1,Sn=4−(1+n2)an.求an.
A:an=n2n−1A:a_{n}=\dfrac {n}{2^{n-1}}A:an=2n−1n
本文介绍了如何利用数列的前n项和(Sn)来求解数列的通项公式(an)。通过两个具体的例子,分别给出当a1=-1且Sn=n²an+1,以及a1=1且Sn=4-(1+n²)an时,数列an的通项公式,解答结果分别为an=-2n+1和an=2n-1/n。
678

被折叠的 条评论
为什么被折叠?



