POJ 3070 Fibonacci 【矩阵快速幂取模 (模板)】

本文介绍了一种利用矩阵快速幂取模的方法来高效计算斐波那契数列的大数值问题,并提供了一个具体的AC代码实现示例。

Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13262 Accepted: 9430

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:



题意:用矩阵快速幂取模求斐波拉契的项;

思路:直接上模板就行,在相乘的过程中进行取模运算;

失误:矩阵快速幂的代码有点麻烦,尽量写的简化一点;


AC代码:

#include<cstdio>
#include<cstring>

typedef long long LL;
const LL MOD=10000;

struct Matrix{
	LL Mat[3][3];
};

Matrix ori,res;

Matrix Mat_mul(Matrix X,Matrix Y)
{
	Matrix Z; memset(Z.Mat,0,sizeof(Z.Mat));
	LL i=0,j=0,k=0;
	for(i=1;i<=2;++i)
	{
		for(k=1;k<=2;++k)
		{
			if(X.Mat[i][k]==0) continue;
			for(j=1;j<=2;++j)
			{
				Z.Mat[i][j]+=(X.Mat[i][k]*Y.Mat[k][j])%MOD;
				Z.Mat[i][j]%=MOD;
			}
		}
	}
	return Z; 
}

void Mat_Q(LL M)
{  
    ori.Mat[1][1]=1; ori.Mat[1][2]=1; 
    ori.Mat[2][1]=1; ori.Mat[2][2]=0;
    res.Mat[1][1]=res.Mat[2][2]=1;
	res.Mat[1][2]=res.Mat[2][1]=0;
	    
	while(M)
	{
		if(M&1) res=Mat_mul(res,ori);
		ori=Mat_mul(ori,ori);
		M>>=1;
	}
}
int main()
{
	LL N;
	while(~scanf("%lld",&N),~N)
	{	
	    if(N==0) printf("0\n");
		else if(N==1) printf("1\n");
		else {
	         Mat_Q(N-1);
			 printf("%lld\n",res.Mat[1][1]);		 
		}    
	} 
	return 0;
 } 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值