「HNOI2016」网络(整体二分,树状数组)

本文介绍了一种在给定树结构上进行路径查询优化的方法,采用整体二分结合树状数组实现,复杂度达到O(nlog²n)。相较于线段树加堆的传统做法,此方法在大规模数据处理上更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

给定一棵树,要求支持一下操作

  1. 选定一条路径,并给定一个权值。
  2. 取消选定一条路径。
  3. 求未经过节点uu的路径中,权值最大的那一个。

n105,m2×105

Solution

网上有许多线段树+堆的做法,但是查询时都递归到了底层,这不是暴力吗??(不过线段树+堆的做法的正确写法似乎是O(nlog3n)O(nlog3n)

这里介绍一种O(nlog2n)O(nlog2n)的整体二分+树状数组的方法。

对于每个询问,二分答案kk,如果所有权值k的路径都覆盖了uu,那么u的答案肯定k⩽k,否则k⩾k

用树状数组维护路径覆盖。对于一条路径(u,v)(u,v),在u,vu,v+1+1,在lca(u,v)lca(u,v)以及lca(u,v)lca(u,v)的父亲处1−1。查询经过每个节点的路径数等于其子树和。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 200005, maxm = 200005;
int n, m, ans[maxm], val[maxn];

inline int gi()
{
    char c = getchar();
    while (c < '0' || c > '9') c = getchar();
    int sum = 0;
    while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
    return sum;
}

struct edge {
    int to, next;
}e[maxn * 2];
int h[maxn], tot;

inline void add(int u, int v)
{
    e[++tot] = (edge) {v, h[u]}; h[u] = tot;
    e[++tot] = (edge) {u, h[v]}; h[v] = tot;
}

struct node {
    int opt, a, b, c;
}q[maxm];

int dfn[maxn], low[maxn], Time, siz[maxn], son[maxn], dep[maxn];
void dfs1(int u, int fa)
{
    siz[u] = 1; dep[u] = dep[fa] + 1;
    for (int v, i = h[u]; v = e[i].to, i; i = e[i].next)
        if (v != fa) {
            dfs1(v, u); siz[u] += siz[v];
            if (siz[son[u]] < siz[v]) son[u] = v;
        }
}

int g[maxn], f[maxn];
void dfs2(int u, int fa)
{
    dfn[u] = ++Time; f[u] = fa;
    if (son[u]) g[son[u]] = g[u], dfs2(son[u], u);
    for (int i = h[u], v; v = e[i].to, i; i = e[i].next)
        if (v != fa && v != son[u]) g[v] = v, dfs2(v, u);
    low[u] = Time;
}

int lca(int u, int v)
{
    while (g[u] != g[v]) {
        if (dep[g[u]] > dep[g[v]]) u = f[g[u]];
        else v = f[g[v]];
    }
    return dep[u] < dep[v] ? u : v;
}

#define lowbit(x) (x & (-x))
int sum[maxn];

inline void insert(int x, int a)
{
    if (!x) return;
    while (x <= n) {
        sum[x] += a; x += lowbit(x);
    }
}

inline int query(int x)
{
    int ret = 0;
    while (x >= 1) {
        ret += sum[x]; x -= lowbit(x);
    }
    return ret;
}

inline void Insert(int u, int v, int k)
{
    insert(dfn[u], k); insert(dfn[v], k); insert(dfn[lca(u, v)], -k); insert(dfn[f[lca(u, v)]], -k);
}

void solve(int qryl, int qryr, int l, int r)
{
    if (l == r) {
        for (int i = qryl; i <= qryr; ++i) if (q[i].opt == 3) ans[q[i].b] = val[l];
        return;
    }

    int mid = val[(l + r) >> 1], Mid = (l + r) >> 1, cnt1 = 0, cnt2 = 0, cntl = 0;
    static node t1[maxm], t2[maxm];
    for (int i = qryl; i <= qryr; ++i) {
        if (q[i].opt == 1) {
            if (q[i].c <= mid) t1[++cnt1] = q[i];
            else Insert(q[i].a, q[i].b, 1), ++cntl, t2[++cnt2] = q[i];
        } else if (q[i].opt == 2) {
            if (q[i].c <= mid) t1[++cnt1] = q[i];
            else Insert(q[i].a, q[i].b, -1), --cntl, t2[++cnt2] = q[i];
        } else {
            int cnt = query(low[q[i].a]) - query(dfn[q[i].a] - 1);
            if (cnt >= cntl) t1[++cnt1] = q[i];
            else t2[++cnt2] = q[i];
        }
    }
    for (int i = qryl; i <= qryr; ++i)
        if (q[i].opt == 1 && q[i].c > mid) Insert(q[i].a, q[i].b, -1);
        else if (q[i].opt == 2 && q[i].c > mid) Insert(q[i].a, q[i].b, 1);

    for (int i = qryl; i <= qryr; ++i) 
        if (i < qryl + cnt1) q[i] = t1[i - qryl + 1];
        else q[i] = t2[i - qryl - cnt1 + 1];

    if (cnt1) solve(qryl, qryl + cnt1 - 1, l, Mid);
    if (cnt2) solve(qryl + cnt1, qryr, Mid + 1, r);
}

int main()
{
    freopen("network.in", "r", stdin);
    freopen("network.out", "w", stdout);

    n = gi(); m = gi();
    for (int i = 1; i < n; ++i) add(gi(), gi());

    dfs1(1, 0);
    dfs2(1, 0);

    int p = 0, cnt = 0;
    for (int opt, t, i = 1; i <= m; ++i) {
        opt = gi() + 1;
        if (opt == 1) q[i] = (node) {opt, gi(), gi(), val[++cnt] = gi()};
        else if (opt == 2) t = gi(), q[i] = q[t], q[i].opt = 2;
        else if (opt == 3) q[i] = (node) {opt, gi(), ++p};
    }

    val[++cnt] = -1; sort(val + 1, val + cnt + 1); cnt = unique(val + 1, val + cnt + 1) - val;
    solve(1, m, 1, cnt);

    for (int i = 1; i <= p; ++i) printf("%d\n", ans[i]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值