Decription
给定集合SS,集合中的元素都小于等于MM.
求有多少种数列满足长度为,且数列中元素乘积modMmodM的值为XX.
Solution
:设fi,jfi,j表示数列中填了ii个数,乘积为jj的方案数,每次枚举有下一元素的值即可.
60pts60pts:发现每次的转移都是一样的,所以可以借用快速幂的思想转移,时间复杂度为O(m2logn)O(m2logn).
100pts:100pts:考虑到O(logn)O(logn)以无法优化,所以考虑优化O(m2)O(m2).希望将转移中的i∗ji∗j转化为i+ji+j,这样可以使用NTTNTT来优化转移.
发现x⩽1x⩽1且mm为奇质数,所以可以用原根的指数运算代替乘法运算(对于的原根gg,完美映射了[1,p−1][1,p−1]).
所以i∗ji∗j 就转化为i′+j′i′+j′,其中gi′=i,gj′=jgi′=i,gj′=j.用NTTNTT优化转移即可.
#include <bits/stdc++.h>
using namespace std;
typedef long long lint;
const int mod = 1004535809;
const int G = 3, Phi = mod - 1;
const int maxn = 33005;
int n, m, x, S, L, N;
int a[maxn], R[maxn], A[maxn], B[maxn], p[maxn], f[maxn], g[maxn];
inline int gi()
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
int sum = 0;
while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
return sum;
}
int Pow(int x, int k, int mod)
{
int res = 1;
while (k) {
if (k & 1) res = (lint)res * x % mod;
x = (lint)x * x % mod; k >>= 1;
}
return res;
}
int mul[maxn];
int calc_rt(int m)
{
int phi = m - 1;
for (int i = 2; i * i <= phi; ++i)
if (phi % i == 0) {
while (phi % i == 0) phi /= i;
mul[++mul[0]] = i;
}
if (phi > 1) mul[++mul[0]] = phi;
for (int i = 2; ; ++i) {
bool flag = 0;
for (int j = 1; j <= mul[0]; ++j)
if (Pow(i, (m - 1) / mul[j], m) == 1) { flag = 1; break; }
if (!flag) return i;
}
return 0;
}
void prepare()
{
N = 1;
for (int i = (m << 1) - 2; N <= i; N <<= 1) ++L;
for (int i = 0; i <= N; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
int rt = calc_rt(m);
for (int i = 0; i < m - 1; ++i) p[Pow(rt, i, m)] = i;
}
void NTT(int *a, int f)
{
for (int i = 0; i < N; ++i)
if (i < R[i]) swap(a[i], a[R[i]]);
for (int i = 1; i < N; i <<= 1) {
int wn = Pow(G, Phi / (i << 1), mod), t;
if (f == -1) wn = Pow(wn, mod - 2, mod);
for (int j = 0; j < N; j += (i << 1)) {
int w = 1;
for (int k = 0; k < i; ++k, w = (lint)w * wn % mod) {
t = (lint)a[i + j + k] * w % mod;
a[j + i + k] = a[j + k] - t + mod;
if (a[j + i + k] >= mod) a[j + i + k] -= mod;
a[j + k] = a[j + k] + t;
if (a[j + k] >= mod) a[j + k] -= mod;
}
}
}
}
void Calc(int *a, int *b)
{
for (int i = 0; i < N; ++i) A[i] = a[i], B[i] = b[i], a[i] = 0;
NTT(A, 1); NTT(B, 1);
for (int i = 0; i < N; ++i) A[i] = (lint)A[i] * B[i] % mod;
NTT(A, -1);
int inv = Pow(N, mod - 2, mod);
for (int i = 0; i < N; ++i) {
(a[i % (m - 1)] += (lint)A[i] * inv % mod) %= mod;
}
}
int main()
{
n = gi(); m = gi(); x = gi(); S = gi();
prepare();
for (int a, i = 1; i <= S; ++i) {
a = gi() % m;
if (a) ++f[p[a]];
}
g[p[1]] = 1;
while (n) {
if (n & 1) Calc(g, f);
Calc(f, f); n >>= 1;
}
printf("%d\n", g[p[x]]);
return 0;
}