「SDOI2015」序列统计-DP+NTT

Decription

给定集合SS,集合S中的元素都小于等于MM.

求有多少种数列满足长度为n,且数列中元素乘积modMmodM的值为XX.

Solution

10pts:设fi,jfi,j表示数列中填了ii个数,乘积modmjj的方案数,每次枚举有下一元素modM的值即可.

60pts60pts:发现每次的转移都是一样的,所以可以借用快速幂的思想转移,时间复杂度为O(m2logn)O(m2logn).

100pts:100pts:考虑到O(logn)O(logn)以无法优化,所以考虑优化O(m2)O(m2).希望将转移中的iji∗j转化为i+ji+j,这样可以使用NTTNTT来优化转移.

发现x1x⩽1mm为奇质数,所以可以用原根的指数运算代替乘法运算(对于p的原根gg,gi(i[0,p2])完美映射了[1,p1][1,p−1]).

所以iji∗j 就转化为i+ji′+j′,其中gi=i,gj=jgi′=i,gj′=j.用NTTNTT优化转移即可.

#include <bits/stdc++.h>
using namespace std;

typedef long long lint;
const int mod = 1004535809;
const int G = 3, Phi = mod - 1;
const int maxn = 33005;

int n, m, x, S, L, N;
int a[maxn], R[maxn], A[maxn], B[maxn], p[maxn], f[maxn], g[maxn];

inline int gi()
{
    char c = getchar();
    while (c < '0' || c > '9') c = getchar();
    int sum = 0;
    while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
    return sum;
}

int Pow(int x, int k, int mod)
{
    int res = 1;
    while (k) {
        if (k & 1) res = (lint)res * x % mod;
        x = (lint)x * x % mod; k >>= 1;
    }
    return res;
}

int mul[maxn];
int calc_rt(int m)
{
    int phi = m - 1;
    for (int i = 2; i * i <= phi; ++i)
        if (phi % i == 0) {
            while (phi % i == 0) phi /= i;
            mul[++mul[0]] = i;
        }
    if (phi > 1) mul[++mul[0]] = phi;
    for (int i = 2; ; ++i) {
        bool flag = 0;
        for (int j = 1; j <= mul[0]; ++j)
            if (Pow(i, (m - 1) / mul[j], m) == 1) { flag = 1; break;    }
        if (!flag) return i;
    }
    return 0;
}

void prepare()
{
    N = 1;
    for (int i = (m << 1) - 2; N <= i; N <<= 1) ++L;
    for (int i = 0; i <= N; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    int rt = calc_rt(m);
    for (int i = 0; i < m - 1; ++i) p[Pow(rt, i, m)] = i;
}

void NTT(int *a, int f)
{
    for (int i = 0; i < N; ++i)
        if (i < R[i]) swap(a[i], a[R[i]]);
    for (int i = 1; i < N; i <<= 1) {
        int wn = Pow(G, Phi / (i << 1), mod), t;
        if (f == -1) wn = Pow(wn, mod - 2, mod);
        for (int j = 0; j < N; j += (i << 1)) {
            int w = 1;
            for (int k = 0; k < i; ++k, w = (lint)w * wn % mod) {
                t = (lint)a[i + j + k] * w % mod;
                a[j + i + k] = a[j + k] - t + mod; 
                if (a[j + i + k] >= mod) a[j + i + k] -= mod;
                a[j + k] = a[j + k] + t;
                if (a[j + k] >= mod) a[j + k] -= mod;
            }
        }
    }
}

void Calc(int *a, int *b)
{
    for (int i = 0; i < N; ++i) A[i] = a[i], B[i] = b[i], a[i] = 0;
    NTT(A, 1); NTT(B, 1);
    for (int i = 0; i < N; ++i) A[i] = (lint)A[i] * B[i] % mod;
    NTT(A, -1);
    int inv = Pow(N, mod - 2, mod);
    for (int i = 0; i < N; ++i) {
        (a[i % (m - 1)] += (lint)A[i] * inv % mod) %= mod;
    }
}

int main()
{
    n = gi(); m = gi(); x = gi(); S = gi();
    prepare();

    for (int a, i = 1; i <= S; ++i) {
        a = gi() % m;
        if (a) ++f[p[a]];
    }   
    g[p[1]] = 1;

    while (n) {
        if (n & 1) Calc(g, f);
        Calc(f, f); n >>= 1;
    }

    printf("%d\n", g[p[x]]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值