随着 Mixtral 8x7B (announcement, model card) 的推出,一种称为混合专家模型 (Mixed
Expert Models,简称 MoEs) 的 Transformer 模型在开源人工智能社区引起了广泛关注。在本篇博文中,我们将深入探讨
MoEs 的核心组件、训练方法,以及在推理过程中需要考量的各种因素
简短总结
混合专家模型 (MoEs):
- 与稠密模型相比, 预训练速度更快
- 与具有相同参数数量的模型相比,具有更快的 推理速度
- 需要 大量显存,因为所有专家系统都需要加载到内存中
- 在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。
什么是混合专家模型?
模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。
混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的规模。特别是在预