Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
Each of the array element will not exceed 100.
The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
首先将所有元素相加,若为奇数直接返回false,为偶数,除以2得到需要组合得到的加和。目的就是从原始数组中找到这样一个组合。这就是一个背包问题
暴力解法,对于每个元素有加与不加两种选择,递归的调用,这样照成的复杂度为
O(2N)
。暴力解法如下:
boolean isValid(int[] nums, int target, int i){
if(i==nums.length) return false;
if(nums[i]==target) return true;
return isValid(nums, target - nums[i], i+1) || isValid(nums, target, i+1);
}
采用动态规划的方法
d[i][j]
表示用数组的前i个元素能否组成j
如果不选第i个元素,那么
d[i][j]=d[i−1][j]
,否则
d[i][j]=d[i−1][j−nums[i]]
,即前i-1个元素能否组成
j−nums[i]
,这样解法为
public boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if ((sum & 1) == 1) {
return false;
}
sum /= 2;
int n = nums.length;
boolean[][] dp = new boolean[n+1][sum+1];
for (int i = 0; i < dp.length; i++) {
Arrays.fill(dp[i], false);
}
dp[0][0] = true;
for (int i = 1; i < n+1; i++) {
dp[i][0] = true;
}
for (int j = 1; j < sum+1; j++) {
dp[0][j] = false;
}
for (int i = 1; i < n+1; i++) {
for (int j = 1; j < sum+1; j++) {
dp[i][j] = dp[i-1][j];
if (j >= nums[i-1]) {
dp[i][j] = (dp[i][j] || dp[i-1][j-nums[i-1]]);
}
}
}
return dp[n][sum];
}
采用空间压缩的方法可以让dp降为一维
public boolean canPartition(int[] nums) {
int sum = 0;
for(int i=0; i < nums.length; i++){
sum += nums[i];
}
if(sum%2==1) return false;
sum /=2;
// return isValid(nums, sum_all, 0);
boolean[] dp = new boolean[sum+1];
dp[0] = true;
for(int i=0; i< nums.length; i++){
for(int j=sum; j>=nums[i]; j--){
dp[j] = dp[j] || dp[j-nums[i]];
}
}
return dp[sum];
}