卡特兰数学习

博客介绍了卡特兰数的定义、递推关系式和通项公式,并通过讨论如何解决凸多边形划分问题,揭示了卡特兰数在几何问题中的应用。通过递推思想,建立了凸多边形划分方案数与卡特兰数之间的联系,得出f(n) = f(2)f(n-2+1) + f(3)f(n-3+1) + ... + f(n-1)f(2),进一步指出f(n) = h(n-2) (n=2,3,4,...)。" 50204867,1386531,理解与应用State(状态)设计模式,"['设计模式', '状态设计模式']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天这个子任务不会做qwq…….
这里写图片描述

正解是卡特兰数。

卡特兰数
定义: h0=1,h1=1
递推关系式: hn=n1i=0hi×hni1
通项公式:
hn=(n2n)n+1
hn=(n2n)(n12n)

应用
(from 百度百科)

在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。任务是键盘上输入凸多边形的边数n,求不同划分的方案数f(n)。比如当n=6时,f(6)=14。
如果纯粹从f(4)=2,f(5)=5,f(6)=14,……,f(n)=n慢慢去归纳,恐怕很难找到问题的递推式,我们必须从一般情况出发去找规律。
因为凸多边形的任意一条边必定属于某一个三角形,所以我们以某一条边为基准,以这条边的两个顶点为起点P1和终点Pn(P即Point),将该凸多边形的顶点依序标记为P1、P2、……、Pn,再在该凸多边形中找任意一个不属于这两个点的顶点Pk(2<=k<=n-1),来构成一个三角形,用这个三角形把一个凸多边形划分成两个凸多边形,其中一个凸多边形,是由P1,P2,……,Pk构成的凸k边形(顶点数即是边数),另一个凸多边形,是由Pk,Pk+1,……,Pn构成的凸n-k+1边形。
此时,我们若把Pk视为确定一点,那么根据乘法原理,f(n)的问题就等价于——凸k多边形的划分方案数乘以凸n-k+1多边形的划分方案数,即选择Pk这个顶点的f(n)=f(k)×f(n-k+1)。而k可以选2到n-1,所以再根据加法原理,将k取不同值的划分方案相加,得到的总方案数为:f(n)=f(2)f(n-2+1)+f(3)f(n-3+1)+……+f(n-1)f(2)。看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n-2) (n=2,3,4,……)。
最后,令f(2)=1,f(3)=1。

未完待续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值