Tensorflow对应Python、CUDA、cuDNN版本(2020.8)

Tensorflow对应Python、CUDA、cuDNN版本

PathCompilerCUDA/cuDNNSIMDNotes
2.3.0\py38\CPU+GPU\cuda110cudnn8sse2VS2019 16.611.0.2_451.48/8.0.2.39x86_64Python 3.8/compute_35
2.3.0\py38\CPU+GPU\cuda110cudnn8avx2VS2019 16.611.0.2_451.48/8.0.2.39AVX2Python 3.8/compute_35,sm_50,sm_52,sm_61,sm_70,compute_75
2.2.0\py37\CPU+GPU\cuda102cudnn76sse2VS2019 16.510.2.89_441.22/7.6.5.32x86_64Python 3.7/Compute 3.0
2.2.0\py37\CPU+GPU\cuda102cudnn76avx2VS2019 16.510.2.89_441.22/7.6.5.32AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.1.0\py37\CPU+GPU\cuda102cudnn76sse2VS2019 16.410.2.89_441.22/7.6.5.32x86_64Python 3.7/Compute 3.0
2.1.0\py37\CPU+GPU\cuda102cudnn76avx2VS2019 16.410.2.89_441.22/7.6.5.32AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.0.0\py37\CPU\sse2VS2019 16.3Nox86_64Python 3.7
2.0.0\py37\CPU\avx2VS2019 16.3NoAVX2Python 3.7
2.0.0\py37\GPU\cuda101cudnn76sse2VS2019 16.310.1.243_426.00/7.6.4.38x86_64Python 3.7/Compute 3.0
2.0.0\py37\GPU\cuda101cudnn76avx2VS2019 16.310.1.243_426.00/7.6.4.38AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.15.0\py37\CPU+GPU\cuda101cudnn76sse2VS2019 16.310.1.243_426.00/7.6.4.38x86_64Python 3.7/Compute 3.0
1.15.0\py37\CPU+GPU\cuda101cudnn76avx2VS2019 16.310.1.243_426.00/7.6.4.38AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.14.0\py37\CPU\sse2VS2019 16.1Nox86_64Python 3.7
1.14.0\py37\CPU\avx2VS2019 16.1NoAVX2Python 3.7
1.14.0\py37\GPU\cuda101cudnn76sse2VS2019 16.110.1.168_425.25/7.6.0.64x86_64Python 3.7/Compute 3.0
1.14.0\py37\GPU\cuda101cudnn76avx2VS2019 16.110.1.168_425.25/7.6.0.64AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.13.1\py37\CPU\sse2VS2017 15.9Nox86_64Python 3.7
1.13.1\py37\CPU\avx2VS2017 15.9NoAVX2Python 3.7
1.13.1\py37\GPU\cuda101cudnn75sse2VS2017 15.910.1.105_418.96/7.5.0.56x86_64Python 3.7/Compute 3.0
1.13.1\py37\GPU\cuda101cudnn75avx2VS2017 15.910.1.105_418.96/7.5.0.56AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py36\CPU\sse2VS2017 15.8Nox86_64Python 3.6
1.12.0\py36\CPU\avx2VS2017 15.8NoAVX2Python 3.6
1.12.0\py36\GPU\cuda100cudnn73sse2VS2017 15.810.0.130_411.31/7.3.1.20x86_64Python 3.6/Compute 3.0
1.12.0\py36\GPU\cuda100cudnn73avx2VS2017 15.810.0.130_411.31/7.3.1.20AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py37\CPU\sse2VS2017 15.8Nox86_64Python 3.7
1.12.0\py37\CPU\avx2VS2017 15.8NoAVX2Python 3.7
1.12.0\py37\GPU\cuda100cudnn73sse2VS2017 15.810.0.130_411.31/7.3.1.20x86_64Python 3.7/Compute 3.0
1.12.0\py37\GPU\cuda100cudnn73avx2VS2017 15.810.0.130_411.31/7.3.1.20AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py36\CPU\sse2VS2017 15.8Nox86_64Python 3.6
1.11.0\py36\CPU\avx2VS2017 15.8NoAVX2Python 3.6
1.11.0\py36\GPU\cuda100cudnn73sse2VS2017 15.810.0.130_411.31/7.3.0.29x86_64Python 3.6/Compute 3.0
1.11.0\py36\GPU\cuda100cudnn73avx2VS2017 15.810.0.130_411.31/7.3.0.29AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py37\CPU\sse2VS2017 15.8Nox86_64Python 3.7
1.11.0\py37\CPU\avx2VS2017 15.8NoAVX2Python 3.7
1.11.0\py37\GPU\cuda100cudnn73sse2VS2017 15.810.0.130_411.31/7.3.0.29x86_64Python 3.7/Compute 3.0
1.11.0\py37\GPU\cuda100cudnn73avx2VS2017 15.810.0.130_411.31/7.3.0.29AVX2Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.10.0\py36\CPU\sse2VS2017 15.8Nox86_64Python 3.6
1.10.0\py36\CPU\avx2VS2017 15.8NoAVX2Python 3.6
1.10.0\py36\GPU\cuda92cudnn72sse2VS2017 15.89.2.148.1/7.2.1.38x86_64Python 3.6/Compute 3.0
1.10.0\py36\GPU\cuda92cudnn72avx2VS2017 15.89.2.148.1/7.2.1.38AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.10.0\py27\CPU\sse2VS2017 15.8Nox86_64Python 2.7
1.10.0\py27\CPU\avx2VS2017 15.8NoAVX2Python 2.7
1.10.0\py27\GPU\cuda92cudnn72sse2VS2017 15.89.2.148.1/7.2.1.38x86_64Python 2.7/Compute 3.0
1.10.0\py27\GPU\cuda92cudnn72avx2VS2017 15.89.2.148.1/7.2.1.38AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py36\CPU\sse2VS2017 15.7Nox86_64Python 3.6
1.9.0\py36\CPU\avx2VS2017 15.7NoAVX2Python 3.6
1.9.0\py36\GPU\cuda92cudnn71sse2VS2017 15.79.2.148/7.1.4x86_64Python 3.6/Compute 3.0
1.9.0\py36\GPU\cuda92cudnn71avx2VS2017 15.79.2.148/7.1.4AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py27\CPU\sse2VS2017 15.7Nox86_64Python 2.7
1.9.0\py27\CPU\avx2VS2017 15.7NoAVX2Python 2.7
1.9.0\py27\GPU\cuda92cudnn71sse2VS2017 15.79.2.148/7.1.4x86_64Python 2.7/Compute 3.0
1.9.0\py27\GPU\cuda92cudnn71avx2VS2017 15.79.2.148/7.1.4AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py36\CPU\sse2VS2017 15.4Nox86_64Python 3.6
1.8.0\py36\CPU\avx2VS2017 15.4NoAVX2Python 3.6
1.8.0\py36\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.3/7.1.3x86_64Python 3.6/Compute 3.0
1.8.0\py36\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.3/7.1.3AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py27\CPU\sse2VS2017 15.4Nox86_64Python 2.7
1.8.0\py27\CPU\avx2VS2017 15.4NoAVX2Python 2.7
1.8.0\py27\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.3/7.1.3x86_64Python 2.7/Compute 3.0
1.8.0\py27\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.3/7.1.3AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py36\CPU\sse2VS2017 15.4Nox86_64Python 3.6
1.7.0\py36\CPU\avx2VS2017 15.4NoAVX2Python 3.6
1.7.0\py36\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.3/7.1.2x86_64Python 3.6/Compute 3.0
1.7.0\py36\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.3/7.1.2AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py27\CPU\sse2VS2017 15.4Nox86_64Python 2.7
1.7.0\py27\CPU\avx2VS2017 15.4NoAVX2Python 2.7
1.7.0\py27\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.3/7.1.2x86_64Python 2.7/Compute 3.0
1.7.0\py27\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.3/7.1.2AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py36\CPU\sse2VS2017 15.4Nox86_64Python 3.6
1.6.0\py36\CPU\avx2VS2017 15.4NoAVX2Python 3.6
1.6.0\py36\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.3/7.1.1x86_64Python 3.6/Compute 3.0
1.6.0\py36\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.3/7.1.1AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py27\CPU\sse2VS2017 15.4Nox86_64Python 2.7
1.6.0\py27\CPU\avx2VS2017 15.4NoAVX2Python 2.7
1.6.0\py27\GPU\cuda91cudnn71sse2VS2017 15.49.1.85.2/7.1.1x86_64Python 2.7/Compute 3.0
1.6.0\py27\GPU\cuda91cudnn71avx2VS2017 15.49.1.85.2/7.1.1AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py36\CPU\avxVS2017 15.4NoAVXPython 3.6
1.5.0\py36\CPU\avx2VS2017 15.4NoAVX2Python 3.6
1.5.0\py36\GPU\cuda91cudnn7avx2VS2017 15.49.1.85/7.0.5AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py27\CPU\sse2VS2017 15.4Nox86_64Python 2.7
1.5.0\py27\CPU\avxVS2017 15.4NoAVXPython 2.7
1.5.0\py27\CPU\avx2VS2017 15.4NoAVX2Python 2.7
1.5.0\py27\GPU\cuda91cudnn7sse2VS2017 15.49.1.85/7.0.5x86_64Python 2.7/Compute 3.0
1.5.0\py27\GPU\cuda91cudnn7avx2VS2017 15.49.1.85/7.0.5AVX2Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.4.0\py36\CPU\avxVS2017 15.4NoAVXPython 3.6
1.4.0\py36\CPU\avx2VS2017 15.4NoAVX2Python 3.6
1.4.0\py36\GPU\cuda91cudnn7avx2VS2017 15.49.1.85/7.0.5AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.3.0\py36\CPU\avxVS2015 Update 3NoAVXPython 3.6
1.3.0\py36\CPU\avx2VS2015 Update 3NoAVX2Python 3.6
1.3.0\py36\GPU\cuda8cudnn6avx2VS2015 Update 38.0.61.2/6.0.21AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.2.1\py36\CPU\avxVS2015 Update 3NoAVXPython 3.6
1.2.1\py36\CPU\avx2VS2015 Update 3NoAVX2Python 3.6
1.2.1\py36\GPU\cuda8cudnn6avx2VS2015 Update 38.0.61.2/6.0.21AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.1.0\py36\CPU\avxVS2015 Update 3NoAVXPython 3.6
1.1.0\py36\CPU\avx2VS2015 Update 3NoAVX2Python 3.6
1.1.0\py36\GPU\cuda8cudnn6avx2VS2015 Update 38.0.61.2/6.0.21AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.0.0\py36\CPU\sse2VS2015 Update 3Nox86_64Python 3.6
1.0.0\py36\CPU\avxVS2015 Update 3NoAVXPython 3.6
1.0.0\py36\CPU\avx2VS2015 Update 3NoAVX2Python 3.6
1.0.0\py36\GPU\cuda8cudnn51sse2VS2015 Update 38.0.61.2/5.1.10x86_64Python 3.6/Compute 3.0
1.0.0\py36\GPU\cuda8cudnn51avx2VS2015 Update 38.0.61.2/5.1.10AVX2Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
0.12.0\py35\CPU\avxVS2015 Update 3NoAVXPython 3.5
0.12.0\py35\CPU\avx2VS2015 Update 3NoAVX2Python 3.5
0.12.0\py35\GPU\cuda8cudnn51avx2VS2015 Update 38.0.61.2/5.1.10AVX2Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1



原文链接: https://github.com/fo40225/tensorflow-windows-wheel/blob/master/README.md.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值