HDU 1242 Rescue(DFS入门)

探讨了一种迷宫寻径算法,旨在寻找从指定起点到终点的最短路径,特别关注如何绕过障碍物并击败守卫,以达到最终目标。该算法通过深度优先搜索实现,并对每个节点进行标记以避免重复访问。

Rescue

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 32571    Accepted Submission(s): 11382


Problem Description
Angel was caught by the MOLIGPY! He was put in prison by Moligpy. The prison is described as a N * M (N, M <= 200) matrix. There are WALLs, ROADs, and GUARDs in the prison.

Angel's friends want to save Angel. Their task is: approach Angel. We assume that "approach Angel" is to get to the position where Angel stays. When there's a guard in the grid, we must kill him (or her?) to move into the grid. We assume that we moving up, down, right, left takes us 1 unit time, and killing a guard takes 1 unit time, too. And we are strong enough to kill all the guards.

You have to calculate the minimal time to approach Angel. (We can move only UP, DOWN, LEFT and RIGHT, to the neighbor grid within bound, of course.)
 

Input
First line contains two integers stand for N and M.

Then N lines follows, every line has M characters. "." stands for road, "a" stands for Angel, and "r" stands for each of Angel's friend. 

Process to the end of the file.
 

Output
For each test case, your program should output a single integer, standing for the minimal time needed. If such a number does no exist, you should output a line containing "Poor ANGEL has to stay in the prison all his life." 
 

Sample Input
7 8 #.#####. #.a#..r. #..#x... ..#..#.# #...##.. .#...... ........
 

Sample Output
13
 
#include <stdio.h>
char map[500][500];
int visit[500][500];
int n,m,min;
void dfs(int x,int y,int len)
{
	if(x<0||y<0||x>=n||y>=m) return;
	if(map[x][y]=='#')return;
	if(len>=min)return;
	if(visit[x][y])return;	
	if(map[x][y]=='r')
	{
		if(min>len)
		{
		min=len;
		return;
		}
	}
	if(map[x][y]=='x')
	{
		len=len+1;
	}
	visit[x][y]=1;
	dfs(x+1,y,len+1);
	dfs(x-1,y,len+1);
	dfs(x,y+1,len+1);
	dfs(x,y-1,len+1);
	visit[x][y]=0;
}
int main(int argc, char *argv[])
{
	while(scanf("%d %d",&n,&m)!=EOF)
	{
		getchar();
		int i,j,len;
		int flagx,flagy;
		for(i=0;i<n;i++)
		{
			for(j=0;j<m;j++)
			{
	  			scanf("%c",&map[i][j]);
				if(map[i][j]=='a')
				{
					flagx=i;
					flagy=j;
				}
			}
			getchar();
		}
		min=999999;
		dfs(flagx,flagy,0);
		if(min==999999)
		printf("Poor ANGEL has to stay in the prison all his life.\n" );
		else
		printf("%d\n",min);
	}
	return 0;
}

关于是否需要用标记的问题:1.每一个点都是四方搜索的如果用过的点不标记的话则会向后开始回溯,其他的回溯同理需要标记

使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问题提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性与有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问题研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问题的符号计算与数值验证,提升理论与仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学与非线性梁理论基础知识,重点关注控制方程的推导逻辑与边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法与结果可视化流程,以达到理论与实践深度融合的目的。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值