Mishka and Interesting sum CodeForces - 703D(离线处理)

本文介绍了一个算法问题,即如何高效地处理区间内的异或查询。通过使用树状数组记录每个数最后一次出现的位置,并结合前缀异或和,实现了快速查询区间内出现偶数次的数的异或值。

Little Mishka enjoys programming. Since her birthday has just passed, her friends decided to present her with array of non-negative integers a1, a2, …, an of n elements!

Mishka loved the array and she instantly decided to determine its beauty value, but she is too little and can’t process large arrays. Right because of that she invited you to visit her and asked you to process m queries.

Each query is processed in the following way:

Two integers l and r (1 ≤ l ≤ r ≤ n) are specified — bounds of query segment.
Integers, presented in array segment [l,  r] (in sequence of integers al, al + 1, …, ar) even number of times, are written down.
XOR-sum of written down integers is calculated, and this value is the answer for a query. Formally, if integers written down in point 2 are x1, x2, …, xk, then Mishka wants to know the value , where — operator of exclusive bitwise OR.
Since only the little bears know the definition of array beauty, all you are to do is to answer each of queries presented.

Input
The first line of the input contains single integer n (1 ≤ n ≤ 1 000 000) — the number of elements in the array.

The second line of the input contains n integers a1, a2, …, an (1 ≤ ai ≤ 109) — array elements.

The third line of the input contains single integer m (1 ≤ m ≤ 1 000 000) — the number of queries.

Each of the next m lines describes corresponding query by a pair of integers l and r (1 ≤ l ≤ r ≤ n) — the bounds of query segment.

Output
Print m non-negative integers — the answers for the queries in the order they appear in the input.

Example
Input
3
3 7 8
1
1 3
Output
0
Input
7
1 2 1 3 3 2 3
5
4 7
4 5
1 3
1 7
1 5
Output
0
3
1
3
2
Note
In the second sample:

There is no integers in the segment of the first query, presented even number of times in the segment — the answer is 0.

In the second query there is only integer 3 is presented even number of times — the answer is 3.

In the third query only integer 1 is written down — the answer is 1.

In the fourth query all array elements are considered. Only 1 and 2 are presented there even number of times. The answer is .

In the fifth query 1 and 3 are written down. The answer is .

一个比较厉害的思维,边做便学。
最后这个题就是转化为如何求一个区间内有多少个不同的数的异或值(关键是这个)。看代码;

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include <time.h>
#include<fstream>
#define maxn 1000003
using namespace std;
struct seg
{
    int l,r,index;
    bool operator <(const seg& rhs)const{return r<rhs.r;}
};//n个询问的结构,
seg p[maxn];
int a[maxn],c[maxn],sum[maxn],pre[maxn],res[maxn];
int n;
int lowbit(int x)//下面三个函数是异或版的树状数组,当然线段树也是可以的
{
    return x&(-x);
}
void add(int x,int v)
{
    for(int i=x;i<=n;i+=lowbit(i))
        c[i]^=v;
}
int getSum(int x)
{
    int ans=0;
    for(int i=x;i>=1;i-=lowbit(i))
        ans^=c[i];
    return ans;
}
int main()
{

     map<int,int>mp;//这个用来映射一个数最新出现的坐标
     memset(c,0,sizeof(c));
     scanf("%d",&n);
     sum[0]=0;
     for(int i=1;i<=n;i++)//数组的输入
     {
         scanf("%d",&a[i]);
         sum[i]=sum[i-1]^a[i];//同时求各个点的前缀异或值,和前缀和的写法是一样的
         pre[i]=mp[a[i]];//这个是一个链状结构,在这个结构中,所对应的a数组的值都是一样的,也就是说map的作用就是这个
         mp[a[i]]=i;//更新最新位置
     }
     int m;
     scanf("%d",&m);
     for(int i=1;i<=m;i++)
     {
         scanf("%d%d",&p[i].l,&p[i].r);
         p[i].index=i;
     }//输入m个询问
     sort(p+1,p+1+m);//以r为标准从小到大排序
     int j=1;
     for(int i=1;i<=m;i++)
     {
        for(;j<=p[i].r;j++)//以每次查询的r为界限,把所有的值尽可能的往右更新,因为查询已经排过序了,所以不会出现我在某个区间上的一个值已经更新更大的坐标的这种情况
        {
            if(pre[j])add(pre[j],a[j]);//如果前面有节点,就把这个点置为0,就是只要在异或一次
            add(j,a[j]);//因为初始化每个点的值都是0,所有只要异或一次,
        }
        res[p[i].index]=sum[p[i].r]^sum[p[i].l-1]^getSum(p[i].r)^getSum(p[i].l-1);,求出这个区间上的不同的异或值
     }
     for(int i=1;i<=m;i++)
        printf("%d\n",res[i]);//把存好的答案输出即可
    return 0;
}
内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值