【WC2019模拟2019.1.14】选数

本文深入解析了在数学算法竞赛中如何利用反演的思想解决涉及最大公约数(GCD)的问题,通过详细步骤展示了从公式推导到具体实现的过程,包括使用FWT算法进行快速统计和meet-in-middle技巧处理复杂情况,最后提供了完整的C++代码实现。

Description:

在这里插入图片描述
在这里插入图片描述

题解:

有gcd那先反演掉。
∑∑gcd(a,b)\sum\sum gcd(a, b)gcd(a,b)
=∑dd∗[d∣a]∗[d∣b]∗[(a/d,b/d)=1]=\sum_{d}d*[d|a]*[d|b]*[(a/d,b/d)=1]=dd[da][db][(a/d,b/d)=1]
=∑dd∗∑d′μ(d′)∗∑dd′∣a∑dd′∣bI=\sum_{d}d*\sum_{d'}\mu(d')*\sum_{dd'|a}\sum_{dd'|b}I=dddμ(d)ddaddbI
=∑d(∑d′∣dμ(d′)∗(d/d′))∑d∣a∑d∣b=\sum_{d}(\sum_{d'|d}\mu(d')*{(d/d')})\sum_{d|a}\sum_{d|b}=d(ddμ(d)(d/d))dadb
=∑dϕ(d)∗∑d∣a∗∑d∣b=\sum_{d}\phi(d)*\sum_{d|a}*\sum_{d|b}=dϕ(d)dadb

其实这个也可以由∑d∣nϕ(d)=n\sum_{d|n}\phi(d)=ndnϕ(d)=n直接得来。

那么问题变成了枚举d,然后把d的倍数弄出来,使异或和为s。

我们只考虑k=4的情况,显然更小的k更简单。

先不考虑重复,之后再来减。

可以设阈值M,当d<=M的时候,d的倍数比较多,可以用FWT暴力统计,当d>M的时候,d的倍数比较少,可以meet-in-middle。

第一部分复杂度为O(M∗n∗log n)O(M*n*log~n)O(Mnlog n)
第二部分复杂度为∑i=M+1n(n/d)2\sum_{i=M+1}^{n}{(n/d)^2}i=M+1n(n/d)2

这个我不会化简,但是感受的到不会很大,随便平衡规划一下。

然后就是重复,注意s>0,所以只有两种情况:
1 3
1 1 2

那么只要枚举一个id,若s^(id)=j*d,算一下即可,系数也很好推。

Code:

#include<cstdio>
#include<algorithm>
#define pp printf
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
#define ff(i, x, y) for(int i = x; i < y; i ++)
using namespace std;

const int mo = 998244353;

ll ksm(ll x, ll y) {
	ll s = 1;
	for(; y; y /= 2, x = x * x % mo)
		if(y & 1) s = s * x % mo;
	return s;
}

ll ni2;

const int N = 65536, M = 128;

int n, k, s, x;
int cnt[N];

ll a[N], b[N]; int tp, r[N];
void dft(ll *a, int tp, int F) {
	int n = 1 << tp;
	for(int h = 1; h < n; h *= 2)
		for(int j = 0; j < n; j += 2 * h) {
			ll A, *l = a + j, *r = a + j + h;
			ff(i, 0, h) {
				A = *r, *r = (*l - A + mo) % mo, *l = (*l + A) % mo;
				if(F == -1) *l = *l * ni2 % mo, *r = *r * ni2 % mo;
				l ++, r ++;
			}
		}
}
void fwt(ll *a, ll *b, int tp) {
	int n = 1 << tp;
	dft(a, tp, 1); dft(b, tp, 1);
	ff(i, 0, n)	a[i] = a[i] * b[i] % mo;
	dft(a, tp, -1);
}

int bz[N], p[N], phi[N], m;

void sieve(int n) {
	fo(i, 2, n) {
		if(!bz[i]) p[++ p[0]] = i, phi[i] = i - 1;
		for(int j = 1; i * p[j] <= n; j ++) {
			int k = i * p[j]; bz[k] = 1;
			if(i % p[j] == 0) {
				phi[k] = phi[i] * p[j];
				break;
			}
			phi[k] = phi[i] * phi[p[j]];
		}
	}
	phi[1] = 1;
}

ll ans, sum;
 
ll c2(ll n) {
	return n * (n - 1) / 2 % mo;
}

ll c3(ll n) {
	return n * (n - 1) * (n - 2) / 6 % mo;
}

ll pe[N], ni24;

int gcd(int x, int y) {
	return !y ? x : gcd(y, x % y);
}

ll g[N];
int c[1000005];

int main() {
	freopen("choose.in", "r", stdin);
	freopen("choose.out", "w", stdout);
	ni2 = ksm(2, mo - 2);
	ni24 = ksm(24, mo - 2);
	scanf("%d %d %d", &n, &k, &s);
	m = 65535; tp = 16;
	fo(i, 1, n) scanf("%d", &x), cnt[x] ++, c[i] = x;
	if(k == 1) {
		pp("%lld\n", (ll) cnt[s] * s % mo);
		return 0;
	}
	if(k == 2) {
		fo(i, 0, m) ans += (ll) cnt[i] * cnt[s ^ i] % mo * gcd(i, s ^ i) % mo;
		pp("%lld\n", ans % mo * ni2 % mo);
		return 0;
	}
	if(k == 3) {
		fo(i, 1, n) fo(j, i + 1, n) {
			int p = s ^ c[i] ^ c[j];
			if(p > 5e4) continue;
			if(cnt[p]) ans += gcd(c[i], gcd(c[j], p)) * cnt[p];
			if(p == c[i]) ans -= gcd(p, c[j]);
			if(p == c[j]) ans -= gcd(p, c[i]);
		}
		pp("%lld\n", ans / 3);
		return 0;
	}
	sieve(m);
	fo(d, 1, m) {
		sum = 0;
		if(d <= M) {
			ff(i, 0, 1 << tp) a[i] = b[i] = 0;
			fo(i, 1, m / d) a[i * d] = b[i * d] = cnt[i * d];
			fwt(a, b, tp);
			fo(i, 0, m) sum = (sum + a[i] * a[s ^ i]) % mo;
		} else {
			fo(i, 1, m / d) fo(j, 1, m / d)
				g[(i * d) ^ (j * d)] += (ll)cnt[i * d] * cnt[j * d] % mo;
			fo(i, 1, m / d) fo(j, 1, m / d)
				sum += g[s ^ (i * d) ^ (j * d)] % mo * cnt[i * d] % mo * cnt[j * d] % mo;
			fo(i, 1, m / d) fo(j, 1, m / d)
				g[(i * d) ^ (j * d)] -= (ll) cnt[i * d] * cnt[j * d] % mo;
		}
		int sp = 0; fo(i, 1, m / d) sp += cnt[d * i];
		fo(i, 1, m / d) {
			if((s ^ (i * d)) % d != 0) continue;
			int j = (s ^ (i * d)) / d; if(i > j) continue;
			if(!cnt[i * d] || !cnt[j * d]) continue;
			sum -= (ll) cnt[i * d] * cnt[j * d] % mo * 8 % mo;
			sum -= (ll) cnt[i * d] * cnt[j * d] % mo * (sp - 2) % mo * 12 % mo;
		}
		sum = (sum % mo + mo) % mo;
		ans = (ans + sum * phi[d]) % mo;
	}
	pp("%lld", ans * ni24 % mo);
}
! A. Stagni, C. Cavallotti, S. Arunthanayothin, Y. Song, ! O. Herbinet, F. Battin-Leclerc, T. Faravelli ! "An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia" ! Reaction Chemistry and Engineering (submitted) (2020). ! ! Submitted to Reaction Chemistry and Engineering (November 2019) ! ! Thermodynamic properties ! ! CHEMKIN format ! !VERSION: 17_03 !AUTHORS: C1-C3 Burcat !NOTE: SPECIES RE-ARRANGED AS THE SAME ORDER IN MECH ! !VERSION: 17_05 !Following species are updated from ATcT's Database: ! H H2 O O2 HE ! OH H2O N2 HO2 HCO ! H2O2 AR CO CO2 THERMO 300. 1000. 4000. ! ---------ARAMCO 2.0 ------------------- HE ATcT3EHe 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] He <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.49985609E+00 2.19365392E-07-1.07525085E-10 2.07198041E-14-1.39358612E-18 2 -7.45309155E+02 9.29535014E-01 2.49976293E+00 1.01013432E-06-8.24578465E-10 3 -6.85983306E-13 7.24751856E-16-7.45340917E+02 9.29800315E-01 0.00000000E+00 4 AR ATcT3EAr 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] Ar <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.49989176E+00 1.56134837E-07-7.76108557E-11 1.52928085E-14-1.05304493E-18 2 -7.45328403E+02 4.38029835E+00 2.49988611E+00 2.13037960E-07 8.97320772E-10 3 -2.31395752E-12 1.30201393E-15-7.45354481E+02 4.38024367E+00 0.00000000E+00 4 N2 ATcT3EN 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] N2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.93802970E+00 1.41838030E-03-5.03281045E-07 8.07555464E-11-4.76064275E-15 2 -9.17180990E+02 5.95521985E+00 3.53603521E+00-1.58270944E-04-4.26984251E-07 3 2.37542590E-09-1.39708206E-12-1.04749645E+03 2.94603724E+00 0.00000000E+00 4 O2 ATcT3EO 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] O2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 3.65980488E+00 6.59877372E-04-1.44158172E-07 2.14656037E-11-1.36503784E-15 2 -1.21603048E+03 3.42074148E+00 3.78498258E+00-3.02002233E-03 9.92029171E-06 3 -9.77840434E-09 3.28877702E-12-1.06413589E+03 3.64780709E+00 0.00000000E+00 4 H2 ATcT3EH 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.90207649E+00 8.68992581E-04-1.65864430E-07 1.90851899E-11-9.31121789E-16 2 -7.97948726E+02-8.45591320E-01 2.37694204E+00 7.73916922E-03-1.88735073E-05 3 1.95517114E-08-7.17095663E-12-9.21173081E+02 5.47184736E-01 0.00000000E+00 4 H2O ATcT3EH 2O 1 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2O <g> ATcT ver. 1.122, DHf298 = -241.833 \B1 0.027 kJ/mol - fit MAR17 2.73117512E+00 2.95136995E-03-8.35359785E-07 1.26088593E-10-8.40531676E-15 2 -2.99169082E+04 6.55183000E+00 4.20147551E+00-2.05583546E-03 6.56547207E-06 3 -5.52906960E-09 1.78282605E-12-3.02950066E+04-8.60610906E-01-2.90858262E+04 4 H2O2 ATcT3EH 2O 2 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2O2 <g> ATcT ver. 1.122, DHf298 = -135.457 \B1 0.064 kJ/mol - fit MAR17 4.54017480E+00 4.15970971E-03-1.30876777E-06 2.00823615E-10-1.15509243E-14 2 -1.79514029E+04 8.55881745E-01 4.23854160E+00-2.49610911E-04 1.59857901E-05 3 -2.06919945E-08 8.29766320E-12-1.76486003E+04 3.58850097E+00-1.62917334E+04 4 O ATcT3EO 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] O <g> ATcT ver. 1.122, DHf298 = 249.229 \B1 0.002 kJ/mol - fit MAR17 2.55160087E+00-3.83085457E-05 8.43197478E-10 4.01267136E-12-4.17476574E-16 2 2.92287628E+04 4.87617014E+00 3.15906526E+00-3.21509999E-03 6.49255543E-06 3 -5.98755115E-09 2.06876117E-12 2.91298453E+04 2.09078344E+00 2.99753606E+04 4 H ATcT3EH 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H <g> ATcT ver. 1.122, DHf298 = 217.998 \B1 0.000 kJ/mol - fit MAR17 2.49985211E+00 2.34582548E-07-1.16171641E-10 2.25708298E-14-1.52992005E-18 2 2.54738024E+04-4.45864645E-01 2.49975925E+00 6.73824499E-07 1.11807261E-09 3 -3.70192126E-12 2.14233822E-15 2.54737665E+04-4.45574009E-01 2.62191345E+04 4 OH ATcT3EH 1O 1 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] OH <g> ATcT ver. 1.122, DHf298 = 37.490 \B1 0.027 kJ/mol - fit MAR17 2.84581721E+00 1.09723818E-03-2.89121101E-07 4.09099910E-11-2.31382258E-15 2 3.71706610E+03 5.80339915E+00 3.97585165E+00-2.28555291E-03 4.33442882E-06 3 -3.59926640E-09 1.26706930E-12 3.39341137E+03-3.55397262E-02 4.50901087E+03 4 HO2 ATcT3EH 1O 2 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] HO2 <g> ATcT ver. 1.122, DHf298 = 12.26 \B1 0.16 kJ/mol - fit MAR17 4.10564010E+00 2.04046836E-03-3.65877562E-07 1.85973044E-11 4.98818315E-16 2 4.32898769E+01 3.30808126E+00 4.26251250E+00-4.45642032E-03 2.05164934E-05 3 -2.35794011E-08 9.05614257E-12 2.62442356E+02 3.88223684E+00 1.47417835E+03 4 !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !NOx MODULE (from Burcat http://garfield.chem.elte.hu/Burcat/THERM.DAT) !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ NO RUS 89N 1O 1 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.26071234E+00 1.19101135E-03-4.29122646E-07 6.94481463E-11-4.03295681E-15 2 9.92143132E+03 6.36900518E+00 4.21859896E+00-4.63988124E-03 1.10443049E-05 3 -9.34055507E-09 2.80554874E-12 9.84509964E+03 2.28061001E+00 1.09770882E+04 4 N2O L 7/88N 2O 1 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.48230729E+01 0.26270251E-02-0.95850872E-06 0.16000712E-09-0.97752302E-14 2 0.80734047E+04-0.22017208E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04 3 0.96819803E-08-0.29307182E-11 0.87417746E+04 0.10757992E+02 0.98141682E+04 4 NO2 L 7/88N 1O 2 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.48847540E+01 0.21723955E-02-0.82806909E-06 0.15747510E-09-0.10510895E-13 2 0.23164982E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04 3 -0.20475426E-07 0.78350564E-11 0.28966180E+04 0.63119919E+01 0.41124701E+04 4 HNO ATcT/AH 1.N 1.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.16598124E+00 2.99958892E-03-3.94376786E-07-3.85344089E-11 7.07602668E-15 2 1.17726311E+04 7.64511172E+00 4.53525574E+00-5.68543377E-03 1.85198540E-05 3 -1.71881225E-08 5.55818157E-12 1.16183003E+04 1.74315886E+00 1.28500657E+04 4 HNO2 ATcT3EH 1N 1O 2 0G 200.00 6000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 4.66358504E+00 4.89854351E-03-1.79694193E-06 2.94420361E-10-1.78235577E-14 2 -7.25216334E+03-3.06053640E-02 4.03779347E+00-4.46123109E-03 3.19440815E-05 3 -3.79359490E-08 1.44570885E-11-6.53088236E+03 5.90620097E+00-5.31122753E+03 4 HONO ATcT3EH 1N 1O 2 0G 200.00 6000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 5.79144641E+00 3.64630732E-03-1.29112765E-06 2.06498233E-10-1.22138679E-14 2 -1.15974343E+04-4.07145349E+00 3.16416438E+00 8.50517773E-03 5.48561573E-07 3 -8.27656474E-09 4.39957151E-12-1.07744086E+04 1.00231941E+01-9.46242812E+03 4 HONO2 T 8/03H 1.N 1.O 3. 0.G 200.000 6000.000 1000. 1 ! HNO3 in Burcat database http://garfield.chem.elte.hu/Burcat/THERM.DAT 8.03098942E+00 4.46958589E-03-1.72459491E-06 2.91556153E-10-1.80102702E-14 2 -1.93138183E+04-1.62616537E+01 1.69329154E+00 1.90167702E-02-8.25176697E-06 3 -6.06113827E-09 4.65236978E-12-1.74198909E+04 1.71839838E+01-1.61524852E+04 4 N2H2 2/13/19 N 2H 2 G 300.000 5000.000 1380.000 1 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 4.14686796E+00 4.81612315E-03-1.62748817E-06 2.50556098E-10-1.44494188E-14 2 2.33444055E+04 5.34122740E-01 2.55589425E+00 6.54339081E-03-8.81947855E-07 3 -1.15971304E-09 3.97442230E-13 2.41085081E+04 9.80504705E+00 4 H2NN Isodiazene T 9/11N 2.H 2. 0. 0.G 200.000 6000.000 1000. 1 ! Is 'N2H2 Isodiazene' in Burcat database 3.05903670E+00 6.18382347E-03-2.22171165E-06 3.58539206E-10-2.14532905E-14 2 3.48530149E+04 6.69893515E+00 4.53204001E+00-7.32418578E-03 3.00803713E-05 3 -3.04000551E-08 1.04700639E-11 3.49580003E+04 1.51074195E+00 3.61943157E+04 4 HNNO 5/30/18 THERM N 2.H 1.O 1 0.G 300.000 5000.000 1790.000 61 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 2.15594002E+06-4.13111192E+03 2.65627771E+00-6.70395293E-04 5.57827338E-08 2 -8.03468100E+08-1.18702032E+07-8.96779017E-01 3.69714359E-02-4.80099825E-05 3 2.62274393E-08-5.11382966E-12 2.68675048E+04 2.64521806E+01 4 NH2NO 5/30/18 THERM N 2.H 2.O 1 0.G 300.000 5000.000 1371.000 61 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 7.93898100E+00 5.21842622E-03-2.12493130E-06 3.53331059E-10-2.12447889E-14 2 5.42322972E+03-1.84299492E+01 1.85914077E+00 1.68525394E-02-9.37240888E-06 3 1.71380329E-09 4.84625807E-14 7.78108234E+03 1.51172833E+01 4 HNOH trans & Equ T11/11H 2.N 1.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.98321933E+00 4.88846374E-03-1.65086637E-06 2.55371446E-10-1.48308561E-14 2 1.05780106E+04 3.62582838E+00 3.95608248E+00-3.02611020E-03 2.56874396E-05 3 -3.15645120E-08 1.24084574E-11 1.09199790E+04 5.55950983E+00 1.21354115E+04 4 NH2OH ATcT/AN 1.H 3.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.88112502E+00 8.15708448E-03-2.82615576E-06 4.37930933E-10-2.52724604E-14 2 -6.86018419E+03 3.79156136E+00 3.21016092E+00 6.19671676E-03 1.10594948E-05 3 -1.96668262E-08 8.82516590E-12-6.58148481E+03 7.93293571E+00-5.28593988E+03 4 NH3 ATcT3EH 3N 1 0 0G 200.00 4000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 2.36074311E+00 6.31850146E-03-2.28966806E-06 4.11767411E-10-2.90836787E-14 2 -6.41596473E+03 8.02154329E+00 4.14027871E+00-3.58489142E-03 1.89475904E-05 3 -1.98833970E-08 7.15267961E-12-6.68545158E+03-1.66754883E-02-5.47888720E+03 4 N2H4 HYDRAZINE L 5/90N 2H 4 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 4.93957357E+00 8.75017187E-03-2.99399058E-06 4.67278418E-10-2.73068599E-14 2 9.28265548E+03-2.69439772E+00 3.83472149E+00-6.49129555E-04 3.76848463E-05 3 -5.00709182E-08 2.03362064E-11 1.00893925E+04 5.75272030E+00 1.14474575E+04 4 N L 6/88N 1 0 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226244E-10-0.20360983E-14 2 0.56133775E+05 0.46496095E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3 0.00000000E+00 0.00000000E+00 0.56104638E+05 0.41939088E+01 0.56850013E+05 4 NO3 ATcT/AN 1.O 3. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 7.48347702E+00 2.57772064E-03-1.00945831E-06 1.72314063E-10-1.07154008E-14 2 6.12990474E+03-1.41618136E+01 2.17359330E+00 1.04902685E-02 1.10472669E-05 3 -2.81561867E-08 1.36583960E-11 7.81290905E+03 1.46022090E+01 8.97563416E+03 4 NH ATcT/AN 1.H 1. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 2.78372644E+00 1.32985888E-03-4.24785573E-07 7.83494442E-11-5.50451310E-15 2 4.23461945E+04 5.74084863E+00 3.49295037E+00 3.11795720E-04-1.48906628E-06 3 2.48167402E-09-1.03570916E-12 4.21059722E+04 1.84834973E+00 4.31525130E+04 4 NNH T 8/11N 2.H 1. 0. 0.G 200.000 6000.000 1000. 1 ! N2H in Burcat database http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.42744423E+00 3.23295234E-03-1.17296299E-06 1.90508356E-10-1.14491506E-14 2 2.87676026E+04 6.39209233E+00 4.25474632E+00-3.45098298E-03 1.37788699E-05 3 -1.33263744E-08 4.41023397E-12 2.87932080E+04 3.28551762E+00 3.00058572E+04 4 NH2 AMIDOGEN RAD IU3/03N 1.H 2. 0. 0.G 200.000 3000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 2.59263049E+00 3.47683597E-03-1.08271624E-06 1.49342558E-10-5.75241187E-15 2 2.15737320E+04 7.90565351E+00 4.19198016E+00-2.04602827E-03 6.67756134E-06 3 -5.24907235E-09 1.55589948E-12 2.11863286E+04-9.04785244E-02 2.23945849E+04 4 H2NO RADICAL T09/09N 1.H 2.O 1. 0.G 200.000 6000.000 1000. 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 3.75555914E+00 5.16219354E-03-1.76387387E-06 2.75052692E-10-1.60643143E-14 2 6.51826177E+03 4.30933053E+00 3.93201139E+00-1.64028165E-04 1.39161409E-05 3 -1.62747853E-08 6.00352834E-12 6.71178975E+03 4.58837038E+00 7.97044877E+03 4 N2H3 Rad. T 7/11N 2.H 3. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 4.04483566E+00 7.31130186E-03-2.47625799E-06 3.83733021E-10-2.23107573E-14 2 2.53241420E+04 2.88423392E+00 3.42125505E+00 1.34901590E-03 2.23459071E-05 3 -2.99727732E-08 1.20978970E-11 2.58198956E+04 7.83176309E+00 2.70438066E+04 4 END 以上是我的therm文件,设置应当正确,而我的初始条件设定均为300k,为什么还会出现问题,还有什么地方设置了所谓的common temperature吗
11-02
### 运行命令 使用 `go run` 命令运行 `mrsequential.go` 程序,同时加载 `wc.so` 并处理以 `pg` 开头的文本文件,命令如下: ```go go run mrsequential.go wc.so pg*.txt ``` 此命令会调用 Go 语言的运行时环境来执行 `mrsequential.go` 程序,将 `wc.so` 作为处理逻辑的插件加载,并且把所有以 `pg` 开头、扩展名为 `.txt` 的文件作为输入据进行处理。 ### 可能出现的问题及解决方案 #### 1. 找不到 `mrsequential.go` 文件 - **问题描述**:当执行命令时,系统提示找不到 `mrsequential.go` 文件。这可能是因为当前工作目录不是包含该文件的目录。 - **解决方案**:使用 `cd` 命令切换到包含 `mrsequential.go` 文件的目录,例如: ```bash cd /path/to/mrsequential/directory ``` #### 2. 找不到 `wc.so` 文件 - **问题描述**:执行命令时,提示无法加载 `wc.so` 文件。可能是 `wc.so` 文件不在当前目录或者路径配置错误。 - **解决方案**:确认 `wc.so` 文件的位置,并确保路径正确。如果文件在其他目录,可以使用绝对路径指定,例如: ```go go run mrsequential.go /path/to/wc.so pg*.txt ``` #### 3. 编译错误 - **问题描述**:在运行 `go run` 命令时,出现编译错误,可能是 `mrsequential.go` 文件中存在语法错误或者依赖的包缺失。 - **解决方案**:检查 `mrsequential.go` 文件的语法,确保代码没有拼写错误、语法错误等。同时,使用 `go mod tidy` 命令来下载和更新依赖的包: ```bash go mod tidy ``` #### 4. `pg*.txt` 文件不存在 - **问题描述**:命令执行时,提示找不到以 `pg` 开头的 `.txt` 文件。这可能是当前目录下确实没有符合条件的文件。 - **解决方案**:确认当前目录下是否存在以 `pg` 开头的 `.txt` 文件。如果文件在其他目录,可以使用绝对路径指定,例如: ```go go run mrsequential.go wc.so /path/to/pg*.txt ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值