基于Matlab开发的动态机器人轨迹仿真

本文探讨了基于Matlab的动态机器人轨迹仿真技术,包括基本概念、流程和一个简单的机械臂运动仿真案例,帮助读者理解如何利用Matlab进行机器人运动轨迹的模拟和编程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Matlab开发的动态机器人轨迹仿真

近年来,机器人技术的发展已经进入了高速发展时期。控制与仿真技术作为机器人领域中至关重要的一环,也随之发展壮大。而在动态机器人轨迹仿真方面,Matlab作为一款具备强大数学计算能力的软件,在该领域中得到广泛应用。

本文将通过Matlab开发一个简单的机器人动态轨迹仿真程序,以便更好的理解和掌握这一技术。

一、动态机器人轨迹仿真的基本概念

动态机器人轨迹仿真是模拟机器人在不同的场景下的运动轨迹。如何实现机器人的运动模拟,即如何确定机器人的运动规律与运动学参数是动态轨迹仿真的核心问题。

在动态机器人轨迹仿真中,最常用到的方法是使用Matlab编写程序进行数值计算,并使用图形界面模拟机器人运动的过程。因此,Matlab成为了当今动态机器人轨迹仿真的首选软件。

二、动态机器人轨迹仿真的基本流程

1.确定机器人的模型及其运动规律:根据机器人的实际情况,选择适当的模型并确定机器人的运动规律。如何进行数学建模是动态机器人轨迹仿真的关键所在。

2.编写仿真程序:使用Matlab编写仿真程序,将机器人的运动规律用数学公式表示出来,并给出相应的初值。

3.运行仿真程序:在Matlab界面中输入相应的命令,运行编写好的仿真程序,以得到机器人的运动轨迹。

4.数据处理与结果显示:得到机器人的运动轨迹后,可以对其进行数据处理与结果显示。

clear all v=0; %%目标速度 v_sensor=0;%%传感器速度 t=1; %%扫描周期 xradarpositon=0; %%传感器坐标 yradarpositon=0; %% ppred=zeros(4,4); Pzz=zeros(2,2); Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1); sumx=0; sumy=0; sumxekf=0; sumyekf=0; %%%统计的初值 L=4; alpha=1; kalpha=0; belta=2; ramda=3-L; azimutherror=0.015; %%方位均方误差 rangeerror=100; %%距离均方误差 processnoise=1; %%过程噪声均方差 tao=[t^3/3 t^2/2 0 0; t^2/2 t 0 0; 0 0 t^3/3 t^2/2; 0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0 t 0 0 t^2/2 0 t ]; a=35*pi/180; a_v=5/100; a_sensor=45*pi/180; x(1)=8000; %%初始位置 y(1)=12000; for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200 xradarpositon=0; yradarpositon=0; Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1); xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值 yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i)); measureerror=[azimutherror^2 0;0 rangeerror^2]; processerror=tao*processnoise; vNoise = size(processerror,1); wNoise = size(measureerror,1); A=[1 t 0 0; 0 1 0 0; 0 0 1 t; 0 0 0 1]; Anoise=size(A,1); for j=1:2*L+1 Wm(j)=1/(2*(L+ramda)); Wc(j)=1/(2*(L+ramda)); end Wm(1)=ramda/(L+ramda); Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值 if i==1 xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i)); P=[xerror xerror/t xyerror xyerror/t; xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2); xyerror xyerror/t yerror yerror/t; xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)]; xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; end cho=(chol(P*(L+ramda)))';% for j=1:L xgamaP1(:,j)=xestimate+cho(:,j); xgamaP2(:,j)=xestimate-cho(:,j); end Xsigma=[xestimate xgamaP1 xgamaP2]; F=A; Xsigmapre=F*Xsigma; xpred=zeros(Anoise,1); for j=1:2*L+1 xpred=xpred+Wm(j)*Xsigmapre(:,j); end Noise1=Anoise; ppred=zeros(Noise1,Noise1); for j=1:2*L+1 ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)'; end ppred=ppred+processerror; chor=(chol((L+ramda)*ppred))'; for j=1:L XaugsigmaP1(:,j)=xpred+chor(:,j); XaugsigmaP2(:,j)=xpred-chor(:,j); end Xaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ]; for j=1:2*L+1 Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ; Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2); end ypred=zeros(2,1); for j=1:2*L+1 ypred=ypred+Wm(j)*Ysigmapre(:,j); end Pzz=zeros(2,2); for j=1:2*L+1 Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)'; end Pzz=Pzz+measureerror; Pxy=zeros(Anoise,2);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值