ACL 2024 | CoCA:自注意力的缺陷与改进

近年来,在大语言模型(LLM)的反复刷屏过程中,作为其内核的 Transformer 始终是绝对的主角。然而,随着业务落地的诉求逐渐强烈,有些原本不被过多关注的特性,也开始成为焦点。例如:在 Transformer 诞生之初,被视为天然具备的长度外推能力,随着相关研究的深入,人们发现,传统的 Transformer 架构在训练长度之外无一例外表现出糟糕的推理性能。

在本文中,作者从一个全新的视角,剖析了造成这种糟糕表现的可能原因,并给出了相应的解决方案。文章主要聚焦于 Self-Attention (Vaswani et al., 2017) 与 RoPE (Su et al., 2021) 的碰撞,后者是近年较多开源模型所采用的位置编码方式,例如:LLaMA (Touvron et al., 2023a) 和 Qwen (Bai et al., 2023)。

论文已被ACL 2024接收,技术细节可以查看预印版本:https://arxiv.org/abs/2309.08646

图片

引言:

在自注意力 (Vaswani et al., 2017) 诞生之初,长度外推被认为是一种理所当然的能力。然而,随着实际应用的不断验证,这在事实上是有难度的,进而产生了一系列相关的优化工作。

现有工作通常聚焦于2个方向:注意力模块和位置编码,并有一系列优秀的工作产生。如:Longformer (Beltagy et al., 2020)、StreamingLLM (Xiao et al., 2023)、LM-Infinite (Han et al., 2023)、Alibi (Press et al., 2021)、Positi

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值