[LeetCode]414. Third Maximum Number第三大的数

本文介绍了一种算法,用于从非空整数数组中找到第三大的数。若不存在第三大的数,则返回最大的数。该算法使用了一个固定大小的列表来跟踪前三大数,并通过遍历整个数组来更新这些值。

知识点:最小整数,数组初始化vector,vector遍历


Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).

给一个非空的整形数组,返回这个数组中第三大的数。如果它不存在,则返回最大的数。时间复杂度必须为o(n)



Example 1:

Input: [3, 2, 1]

Output: 1

Explanation: The third maximum is 1.

Example 2:

Input: [1, 2]

Output: 2

Explanation: The third maximum does not exist, so the maximum (2) is returned instead.

Example 3:

Input: [2, 2, 3, 1]

Output: 1

Explanation: Note that the third maximum here means the third maximum distinct number.
Both numbers with value 2 are both considered as second maximum.

Subscribe to see which companies asked this question

void InsertOneNum2List(long sortList[3], int num)
    {	
        //sortList 0-max,1-second,2-third
        if(num == sortList[0] || num == sortList[1] ||num == sortList[2])
            return;
        if(num > sortList[0])
        {
            sortList[2] = sortList[1];
            sortList[1] = sortList[0];
            sortList[0] = num;
        }
        else if(num > sortList[1])
        {
            sortList[2] = sortList[1];
            sortList[1] = num;
        }
        else if(num > sortList[2])
        {
            sortList[2] = num;
        }
    }
    
class Solution {
public:
   

    int thirdMax(vector<int>& nums) {
        //因为会用INT_MIN作为测试数,所以这里需要用LONG_MIN
        long sortList[3] = {LONG_MIN,LONG_MIN,LONG_MIN};

//遍历插入
        vector<int>::iterator iter;
        for(iter = nums.begin();iter != nums.end();iter++)
        {
            InsertOneNum2List(sortList,*iter);
            
			
        }
    
        if(sortList[2] == LONG_MIN || sortList[2] == sortList[1])
            return sortList[0];
        else
            return sortList[2];
        }
};

void main()
{	
	int a[] = {1,2,-2147483648};
	vector<int> nums(a,a+3);
	Solution *s = new Solution();
	int result = s->thirdMax(nums);
	cout<<result;
}


 
 

Yousef has an array a of size n . He wants to partition the array into one or more contiguous segments such that each element ai belongs to exactly one segment. A partition is called cool if, for every segment bj , all elements in bj also appear in bj+1 (if it exists). That is, every element in a segment must also be present in the segment following it. For example, if a=[1,2,2,3,1,5] , a cool partition Yousef can make is b1=[1,2] , b2=[2,3,1,5] . This is a cool partition because every element in b1 (which are 1 and 2 ) also appears in b2 . In contrast, b1=[1,2,2] , b2=[3,1,5] is not a cool partition, since 2 appears in b1 but not in b2 . Note that after partitioning the array, you do not change the order of the segments. Also, note that if an element appears several times in some segment bj , it only needs to appear at least once in bj+1 . Your task is to help Yousef by finding the maximum number of segments that make a cool partition. Input The first line of the input contains integer t (1≤t≤104 ) — the number of test cases. The first line of each test case contains an integer n (1≤n≤2⋅105 ) — the size of the array. The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n ) — the elements of the array. It is guaranteed that the sum of n over all test cases doesn't exceed 2⋅105 . Output For each test case, print one integer — the maximum number of segments that make a cool partition. Example InputCopy 8 6 1 2 2 3 1 5 8 1 2 1 3 2 1 3 2 5 5 4 3 2 1 10 5 8 7 5 8 5 7 8 10 9 3 1 2 2 9 3 3 1 4 3 2 4 1 2 6 4 5 4 5 6 4 8 1 2 1 2 1 2 1 2 OutputCopy 2 3 1 3 1 3 3 4 Note The first test case is explained in the statement. We can partition it into b1=[1,2] , b2=[2,3,1,5] . It can be shown there is no other partition with more segments. In the second test case, we can partition the array into b1=[1,2] , b2=[1,3,2] , b3=[1,3,2] . The maximum number of segments is 3 . In the third test case, the only partition we can make is b1=[5,4,3,2,1]
最新发布
06-09
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值