import glob
import json
import os
import random
import shutil
from typing import Tuple
import cv2 as cv
import numpy as np
from tqdm import tqdm
def f_gaussian_noise(img, mean=0, var=0.001):
img = np.array(img / 255, dtype=float)
noise = np.random.normal(mean, var ** 0.5, img.shape)
out = img + noise
if out.min() < 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0)
out = np.uint8(out * 255)
return out
def f_salt_noise(img, prob):
output = np.zeros(img.shape, np.uint8)
thresh = 1 - prob
for i in range(img.shape[0]):
for j in range(img.shape[1]):
rdn = random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thresh:
output[i][j] = 255
else:
output[i][j] = img[i][j]
return output
class DataAugment:
def __init__(self, img_glob_path, img_save_path, json_save_path, salt_noise: bool = True,
gaussian_noise: bool = True, median_blur: bool = True,
gaussian_blur: bool = True, salt_noise_prop=0.02, gaussian_noise_param: Tuple[int, float] = (0, 0.001),
median_blur_k_size=3, gaussian_blur_k_size=3):
"""
:param img_glob_path: 图片读取路径
:param img_save_path: 图片保存路径
:param json_save_path: json文件保存路径
:param salt_noise: 椒盐噪声
:param gaussian_noise: 高斯噪声
:param median_blur: 中值模糊
:param gaussian_blur: 高斯模糊
:param salt_noise_prop: 椒盐比例
:param gaussian_noise_param: 高斯噪声参数(均值,方差)
:param median_blur_k_size: 中值模糊核
:param gaussian_blur_k_size: 高斯模糊核
"""
self.img_glob_path = img_glob_path
self.img_save_path = img_save_path
self.json_save_path = json_save_path
self.salt_noise = salt_noise
self.gaussian_noise = gaussian_noise
self.median_blur = median_blur
self.gaussian_blur = gaussian_blur
self.gaussian_blur_k_size = gaussian_blur_k_size
self.median_blur_k_size = median_blur_k_size
self.gaussian_noise_var = gaussian_noise_param[1]
self.gaussian_noise_mean = gaussian_noise_param[0]
self.salt_noise_prop = salt_noise_prop
def augment(self):
count = 0
for img_file_path in tqdm(glob.glob(self.img_glob_path)):
img_save_path: str = self.img_save_path + "/" + str(count) + ".jpg"
shutil.copy(img_file_path, img_save_path)
img = cv.imread(img_file_path)
if self.salt_noise:
salt_noise_img = f_salt_noise(img, self.salt_noise_prop)
salt_noise_img_file_path = img_save_path.replace(".jpg", "_salt_noise.jpg")
cv.imwrite(salt_noise_img_file_path, salt_noise_img)
if self.gaussian_noise:
gaussian_noise_img = f_gaussian_noise(img, self.gaussian_noise_mean, self.gaussian_noise_var)
gaussian_noise_img_file_path = img_save_path.replace(".jpg", "_gaussian_noise.jpg")
cv.imwrite(gaussian_noise_img_file_path, gaussian_noise_img)
if self.median_blur:
median_blur_img = cv.medianBlur(img, self.median_blur_k_size)
median_blur_img_file_path = img_save_path.replace(".jpg", "_median_blur.jpg")
cv.imwrite(median_blur_img_file_path, median_blur_img)
if self.gaussian_blur:
gaussian_blur_img = cv.GaussianBlur(img, (self.gaussian_blur_k_size, self.gaussian_blur_k_size), 0)
gaussian_blur_img_file_path = img_save_path.replace(".jpg", "_gaussian_blur.jpg")
cv.imwrite(gaussian_blur_img_file_path, gaussian_blur_img)
count += 1
if __name__ == '__main__':
data_augment = DataAugment(img_glob_path='./data/kinetic/image*/*.jpg', img_save_path='./labelme_imgs',
json_save_path='./labelme_jsons', salt_noise_prop=0.002,
gaussian_noise=False, median_blur=False, salt_noise=False,gaussian_blur=False)
data_augment.augment()
opencv图像噪声滤波
最新推荐文章于 2025-08-31 09:57:19 发布
1130

被折叠的 条评论
为什么被折叠?



