最小表示法 KMP 扩展KMP Manacher 模板

本文深入探讨了字符串处理中的关键算法,包括最小表示法结合KMP算法解决字符串旋转问题,Manacher算法寻找最长回文子串,以及扩展KMP算法进行高效匹配。通过具体实例展示了这些算法的应用场景和实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小表示法+KMP

String Problem

 HDU - 3374 

Give you a string with length N, you can generate N strings by left shifts. For example let consider the string “SKYLONG”, we can generate seven strings: 
String Rank 
SKYLONG 1 
KYLONGS 2 
YLONGSK 3 
LONGSKY 4 
ONGSKYL 5 
NGSKYLO 6 
GSKYLON 7 
and lexicographically first of them is GSKYLON, lexicographically last is YLONGSK, both of them appear only once. 
  Your task is easy, calculate the lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), its times, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also. 

Input

  Each line contains one line the string S with length N (N <= 1000000) formed by lower case letters.

Output

Output four integers separated by one space, lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), the string’s times in the N generated strings, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also.

Sample Input

abcder
aaaaaa
ababab

Sample Output

1 1 6 1
1 6 1 6
1 3 2 3
#include<iostream>
#include<stack>
#include<cstring>
#include<cstdio>
#include<set>
#include<queue>
using namespace std;
char ss[1000005];
int net[1000005];
int getminindex()
{
    int len=strlen(ss);
    int i=0,j=1,k=0;
    while(i<len&&j<len&&k<len){
        if(ss[(i+k)%len]==ss[(j+k)%len])
            k++;
        else if(ss[(i+k)%len]<ss[(j+k)%len]){
            j=j+k+1;
            k=0;
        }
        else{
            i=i+k+1;
            k=0;
        }
        if(i==j)
            j++;
    }
    return i<j?i:j;
}
int getmaxindex()
{
    int len=strlen(ss);
    int i=0,j=1,k=0;
    while(i<len&&j<len&&k<len){
        if(ss[(i+k)%len]==ss[(j+k)%len])
            k++;
        else if(ss[(i+k)%len]>ss[(j+k)%len]){
            j=j+k+1;
            k=0;
        }
        else{
            i=i+k+1;
            k=0;
        }
        if(i==j)
            j++;
    }
    return i<j?i:j;
}
void getnet()
{
    int len=strlen(ss);
    for(int i=1;i<len;i++){
        int j=net[i-1];
        while(ss[j]!=ss[i]&&j>0)
            j=net[j-1];
        if(ss[j]==ss[i])
            net[i]=j+1;
        else
            net[i]=0;
    }
}
int main()
{
    while(scanf("%s",ss)!=-1){
        getnet();
        int len=strlen(ss);
        int mincycle=len-net[len-1];
        int m=1;
        if(len%mincycle==0)
            m=len/mincycle;
        printf("%d %d %d %d\n",getminindex()+1,m,getmaxindex()+1,m);
    }
    return 0;
}

Manacher

T - Palindrome

 POJ - 3974 

Andy the smart computer science student was attending an algorithms class when the professor asked the students a simple question, "Can you propose an efficient algorithm to find the length of the largest palindrome in a string?" 

A string is said to be a palindrome if it reads the same both forwards and backwards, for example "madam" is a palindrome while "acm" is not. 

The students recognized that this is a classical problem but couldn't come up with a solution better than iterating over all substrings and checking whether they are palindrome or not, obviously this algorithm is not efficient at all, after a while Andy raised his hand and said "Okay, I've a better algorithm" and before he starts to explain his idea he stopped for a moment and then said "Well, I've an even better algorithm!". 

If you think you know Andy's final solution then prove it! Given a string of at most 1000000 characters find and print the length of the largest palindrome inside this string.

Input

Your program will be tested on at most 30 test cases, each test case is given as a string of at most 1000000 lowercase characters on a line by itself. The input is terminated by a line that starts with the string "END" (quotes for clarity). 

Output

For each test case in the input print the test case number and the length of the largest palindrome. 

Sample Input

abcbabcbabcba
abacacbaaaab
END

Sample Output

Case 1: 13
Case 2: 6
#include<iostream>
#include<stack>
#include<cstring>
#include<cstdio>
#include<set>
#include<queue>
#include<map>
#include<iostream>
#include<string>
using namespace std;
const int num=1000010;
int r[num*2];
char ss[num],ssa[num*2];
int get_r()
{
    ssa[0]='#';
    int len=1;
    int lenss=strlen(ss);
    for(int i=0; i<lenss; i++)
    {
        ssa[len++]=ss[i];
        ssa[len++]='#';
    }
    ssa[len]='\0';
    int bound=0,cent=0,maxr=0;
    for(int i=0; i<len; i++)
    {
        if(i<bound)
            r[i]=min(r[cent*2-i],bound-i);
        else
            r[i]=0;
        while(i-r[i]-1>=0&&i+r[i]+1<len&&ssa[i-r[i]-1]==ssa[i+r[i]+1])
            r[i]++;
        if(bound<i+r[i])
        {
            cent=i;
            bound=i+r[i];
        }
        maxr=max(maxr,r[i]);
    }
    return maxr;
}
int main()
{
    int cnt=1;
    while(scanf("%s",ss)!=-1)
    {
        if(ss[0]=='E')
            break;
        memset(r,0,sizeof(r));
        printf("Case %d: %d\n",cnt++,get_r());
    }
    return 0;
}

扩展KMP

const int maxn=100010;
int net[maxn],ex[maxn];
void getnet(char* s2)
{

    int i=0,j,po,len=strlen(s2);
    net[0]=len;
    while(s2[i]==s2[i+1]&&i+1<len)
        i++;
    net[1]=i;
    po=1;
    for(i=2; i<len; i++){
        if(net[i-po]+i<net[po]+po)
            net[i]=net[i-po];
        else{
            j=net[po]+po-i;
            if(j<0)
                j=0;
            while(i+j<len&&s2[j]==s2[j+i])
                j++;
            net[i]=j;
            po=i;
        }
    }
}
void getex(char* s1,char* s2)
{
    int i=0,j,po,len1=strlen(s1),len2=strlen(s2);
    getnet(s2);
    while(s1[i]==s2[i]&&i<len1&&i<len2)
        i++;
    ex[0]=i;
    po=0;
    for(i=1; i<len1; i++)
    {
        if(net[i-po]+i<ex[po]+po)
            ex[i]=net[i-po];
        else{
            j=ex[po]+po-i;
            if(j<0)
                j=0;
            while(i+j<len1&&j<len2&&s1[j+i]==s2[j])
                j++;
            ex[i]=j;
            po=i;
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值