二维线段树

用于矩阵的快速修改和查询(修改和查询的时间复杂度都为logn,空间复杂度是(4*n)*(4*n))

这里提供两种操作  单点修改+区间询查  区间修改+单点询查

由于(单点修改+区间询查 )和( 区间修改+单点询查)的sum数组意义不同,所以该代码无法实现(单点修改+单点询查)和(区间修改+区间询查)

单点修改

void changex(int kx,int l,int r)
{
    changey(kx,1,1,h);
    if(l==r) return;
    int mid=l+r>>1;
    if(x<=mid) changex(kx<<1,l,mid);
    else changex(kx<<1|1,mid+1,r);
}
void changey(int kx,int ky,int l,int r)
{
    sum[kx][ky]++;
    if(l==r) return;
    int mid=l+r>>1;
    if(y<=mid) changey(kx,ky<<1,l,mid);
    else changey(kx,ky<<1|1,mid+1,r);
}

区间询查 

void queryx(int kx,int l,int r)
{
    if(l>=xl && r<=xr)
    {
        queryy(kx,1,1,h);
        return;
    }
    int mid=l+r>>1;
    if(xl<=mid) queryx(kx<<1,l,mid);
    if(xr>mid) queryx(kx<<1|1,mid+1,r);
}
void queryy(int kx,int ky,int l,int r)
{
    if(l>=yl && r<=yr)
    {
        cnt+=sum[kx][ky];
        return;
    }
    int mid=l+r>>1;
    if(yl<=mid) queryy(kx,ky<<1,l,mid);
    if(yr>mid) queryy(kx,ky<<1|1,mid+1,r);
}

区间修改

void changex(int kx,int l,int r)
{
    if(x1<=l&&r<=x2)
    {
        changey(kx,1,1,n);
        return;
    }
    int mid=l+r>>1;
    if(x1<=mid) changex(kx<<1,l,mid);
    if(x2>mid) changex(kx<<1|1,mid+1,r);
}
void changey(int kx,int ky,int l,int r)
{
    if(y1<=l&&r<=y2)
    {
        sum[kx][ky]++;
        return;
    }
    int mid=l+r>>1;
    if(y1<=mid) changey(kx,ky<<1,l,mid);
    if(y2>mid) changey(kx,ky<<1|1,mid+1,r);
}

单点询查

void queryx(int kx,int l,int r)
{
    queryy(kx,1,1,n);
    if(l==r) return;
    int mid=l+r>>1;
    if(x<=mid) queryx(kx<<1,l,mid);
    else queryx(kx<<1|1,mid+1,r);
}
void queryy(int kx,int ky,int l,int r)
{
    ans+=sum[kx][ky];
    if(l==r) return;
    int mid=ly+ry>>1;
    if(y<=mid) queryy(kx,ky<<1,l,mid);
    else queryy(kx,ky<<1|1,mid+1,r);
}

Matrix  POJ - 2155 (二维线段树区间修改+区间询查)

https://vjudge.net/contest/301590#problem/D  

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

Output

For each querying output one line, which has an integer representing A[x, y]. 

There is a blank line between every two continuous test cases. 

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1
#include<stdio.h>
#include<string.h>
const int num=1005;
int tree[num*4][num*4];
int x1,y1,x2,y2,n,ans;
int pointx,pointy;
void changey(int kx,int ky,int treel,int treer)
{
    if(y1<=treel&&y2>=treer){
        tree[kx][ky]++;
        return;
    }
    int bet=(treel+treer)/2;
    if(y1<=bet) changey(kx,ky*2,treel,bet);
    if(y2>bet) changey(kx,ky*2+1,bet+1,treer);
}
void changex(int kx,int treel,int treer)
{
    if(x1<=treel&&x2>=treer){
        changey(kx,1,1,n);
        return;
    }
    int bet=(treel+treer)/2;    
    if(x1<=bet) changex(kx*2,treel,bet);
    if(x2>bet) changex(kx*2+1,bet+1,treer);
}
void asky(int kx,int ky,int treel,int treer)
{
    ans+=tree[kx][ky];
    if(treel==treer)
        return;
    int bet=(treel+treer)/2;
    if(pointy<=bet) asky(kx,ky*2,treel,bet);
    else asky(kx,ky*2+1,bet+1,treer);
}
void askx(int kx,int treel,int treer)
{
    asky(kx,1,1,n);
    if(treel==treer)
        return;
    int bet=(treel+treer)/2;
    if(pointx<=bet) askx(kx*2,treel,bet);
    else askx(kx*2+1,bet+1,treer);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        memset(tree,0,sizeof(tree));
        int m;
        scanf("%d %d",&n,&m);
        for(int i=0;i<m;i++){
            char ss[2];
            scanf("%s",ss);
            if(ss[0]=='C'){
                scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
                changex(1,1,n);
            }
            else{
                scanf("%d %d",&pointx,&pointy);
                ans=0;
                askx(1,1,n);
                printf("%d\n",ans%2);
            }
        }
        if(t!=0)
            printf("\n");
    }
    return 0;
}

 

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值