1. Problem Description
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Example 1:
Input: [7, 1, 5, 3, 6, 4]
Output: 5
max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
Example 2:
Input: [7, 6, 4, 3, 1]
Output: 0
In this case, no transaction is done, i.e. max profit = 0.
求数组中两个索引上升的数的最大差。
2. My solution1(暴力O[n^2])
双重循环跑一个最大差。
int maxProfit(vector<int>& prices)
{
int ans=0;
int len=prices.size();
for(int i=0; i<len; i++)
{
for(int j=i+1; j<len; j++)
{
if(prices[j]-prices[i]>ans)
ans=prices[j]-prices[i];
}
}
return ans;
}
3. My solution2(DP)
每次把当前最小值记录下来,每次更新;
把当前最大值也记录下来,用当前值和最小值之差更新。
int maxProfit(vector<int>& prices)
{
int minidx=0;
int ans=0;
int len=prices.size();
for(int i=1; i<len; i++)
{
if(prices[i]<prices[minidx])
minidx=i;
if(prices[i]-prices[minidx]>ans)
ans=prices[i]-prices[minidx];
}
return ans;
}