机器学习笔记7:TensorFlow进阶之利用CNN训练MNIST

机器学习笔记7:TensorFlow进阶之利用CNN训练MNIST

  本文的理论基础部分以及参考代码源于TensorFlow中文社区以及aliceyangxi1987的博客

代码分析及调试

  在aliceyangxi1987的博客中,基本的代码思路与中文社区中的思路基本一致,不同的地方在于,博客中的代码将准确率计算的步骤进行封装成一个函数也就是compute_accuracy()函数。整体代码如下:

# coding=utf-8

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值