Introduction to SIFT (Scale-Invariant Feature Transform)

本文介绍了SIFT(尺度不变特征转换)算法的概念,包括尺度空间极值检测、关键点定位、方向分配、关键点描述符和关键点匹配等步骤。SIFT算法旨在实现旋转和缩放不变性,通过检测和描述图像中的兴趣点来实现鲁棒的图像匹配。在OpenCV中,可以使用内置的SIFT功能检测关键点并计算其描述符。

Goal

In this chapter
- We will learn about the concepts of SIFT algorithm.
- We will learn to find SIFT Keypoints and Descriptors.

Theory

In last couple of chapters, we saw some corner detectors like Harris etc. They are rotation-invariant, which means, even if the image is rotated, we can find the same corners. It is obvious because corners remain corners in rotated image also. But what about scaling? A corner may not be a corner if the image is scaled. For example, check a simple image below. A corner in a small image within a small window is flat when it is zoomed in the same window. So Harris corner is not scale invariant.
这里写图片描述
Scale-Invariance
So, in 2004, D.Lowe, University of British Columbia, came up with a new algorithm, Scale Invariant Feature Transform (SIFT) in his paper, Distinctive Image Features from Scale-Invariant Keypoints, which extract keypoints and compute its descriptors. (This paper is easy to understand and considered to be best material available on SIFT. So this explanation is just a short summary of this paper).

There are mainly four steps involved in SIFT algorithm. We will see them one-by-one.

1. Scale-space Extrema Detection

From the image above, it is obvious that we can’t use the same window to detect keypoints with different scale. It is OK with small corner. But to detect larger corners we need larger windows. For this, scale-space filtering is used. In it, Laplacian of Gaussian is found for the image with various σ values. LoG acts as a blob detector which detects blobs in various sizes due to change in σ . In short, σ acts as a scaling parameter. For eg, in the above image, gaussian kernel with low σ gives high value for small corner while guassian kernel with high σ fits well for larger corner. So, we can find the local maxima across the scale and space which gives us a list of (x,y,σ) values which means there is a potential keypoint at (x,y) at σ scale.

But this LoG is a little costly, so SIFT algorithm uses Difference of Gaussians which is an approximation of LoG. Difference of Gaussian is obtained as the difference of Gaussian blurring of an image with two different \sigma, let it be \sigma and k\sigma. This process is done for different octaves of the image in Gaussian Pyramid. It is represented in below image:
Difference of Gaussian

Once this DoG are found, images are searched for local extrema over scale and space. For eg, one pixel in an image is compared with its 8 neighbours as well as 9 pixels in next scale and 9 pixels in previous scales. If it is a local extrema, it is a potential keypoint. It basically means that keypoint is best represented in that scale. It is shown in below image:

Difference of Gaussian
Regarding different parameters, the paper gives some empirical data which can be summarized as, number of octaves = 4, number of scale levels = 5, initial σ=1.6 , k=2 etc as optimal values.

2. Keypoint Localization

Once potential keypoints locations are found, they have to be refined to get more accurate results. They used Taylor series expansion of scale space to get more accurate location of extrema, and if the intensity at this extrema is less than a threshold value (0.03 as per the paper), it is rejected. This threshold is called contrastThreshold in OpenCV

DoG has higher response for edges, so edges also need to be removed. For this, a concept similar to Harris corner detector is used. They used a 2x2 Hessian matrix (H) to compute the pricipal curvature. We know from Harris corner detector that for edges, one eigen value is larger than the other. So here they used a simple function,

If this ratio is greater than a threshold, called edgeThreshold in OpenCV, that keypoint is discarded. It is given as 10 in paper.

So it eliminates any low-contrast keypoints and edge keypoints and what remains is strong interest points.

3. Orientation Assignment

Now an orientation is assigned to each keypoint to achieve invariance to image rotation. A neigbourhood is taken around the keypoint location depending on the scale, and the gradient magnitude and direction is calculated in that region. An orientation histogram with 36 bins covering 360 degrees is created. (It is weighted by gradient magnitude and gaussian-weighted circular window with \sigma equal to 1.5 times the scale of keypoint. The highest peak in the histogram is taken and any peak above 80% of it is also considered to calculate the orientation. It creates keypoints with same location and scale, but different directions. It contribute to stability of matching.

4. Keypoint Descriptor

Now keypoint descriptor is created. A 16x16 neighbourhood around the keypoint is taken. It is devided into 16 sub-blocks of 4x4 size. For each sub-block, 8 bin orientation histogram is created. So a total of 128 bin values are available. It is represented as a vector to form keypoint descriptor. In addition to this, several measures are taken to achieve robustness against illumination changes, rotation etc.

5. Keypoint Matching

Keypoints between two images are matched by identifying their nearest neighbours. But in some cases, the second closest-match may be very near to the first. It may happen due to noise or some other reasons. In that case, ratio of closest-distance to second-closest distance is taken. If it is greater than 0.8, they are rejected. It eliminaters around 90% of false matches while discards only 5% correct matches, as per the paper.

So this is a summary of SIFT algorithm. For more details and understanding, reading the original paper is highly recommended. Remember one thing, this algorithm is patented. So this algorithm is included in Non-free module in OpenCV.

SIFT in OpenCV
So now let’s see SIFT functionalities available in OpenCV. Let’s start with keypoint detection and draw them. First we have to construct a SIFT object. We can pass different parameters to it which are optional and they are well explained in docs.

import cv2
import numpy as np

img = cv2.imread('home.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT()
kp = sift.detect(gray,None)

img=cv2.drawKeypoints(gray,kp)

cv2.imwrite('sift_keypoints.jpg',img)

sift.detect() function finds the keypoint in the images. You can pass a mask if you want to search only a part of image. Each keypoint is a special structure which has many attributes like its (x,y) coordinates, size of the meaningful neighbourhood, angle which specifies its orientation, response that specifies strength of keypoints etc.

OpenCV also provides cv2.drawKeyPoints() function which draws the small circles on the locations of keypoints. If you pass a flag, cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS to it, it will draw a circle with size of keypoint and it will even show its orientation. See below example.

img=cv2.drawKeypoints(gray,kp,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imwrite('sift_keypoints.jpg',img)

See the two results below:
SIFT Keypoints

Now to calculate the descriptor, OpenCV provides two methods.

1.Since you already found keypoints, you can call sift.compute() which computes the descriptors from the keypoints we have found. Eg: kp,des = sift.compute(gray,kp)
2.If you didn’t find keypoints, directly find keypoints and descriptors in a single step with the function, sift.detectAndCompute().
We will see the second method:

sift = cv2.SIFT()
kp, des = sift.detectAndCompute(gray,None)

Here kp will be a list of keypoints and des is a numpy array of shape Number_of_Keypoints×128 .

So we got keypoints, descriptors etc. Now we want to see how to match keypoints in different images. That we will learn in coming chapters.

Scale-Invariant Feature TransformSIFT,尺度不变特征变换)是一种用于图像处理和计算机视觉中的关键点检测和描述的算法,由David Lowe在1999年提出,并在2004年进一步改进。其主要特点是对尺度和旋转的不变性,在图像匹配、目标识别和3D重建等领域非常流行[^3]。 SIFT算法的原理基于从尺度不变的关键点中提取关键点并计算其描述符。该算法主要包括以下步骤: 1. **尺度空间极值检测**:通过构建尺度空间,也就是在不同尺度下观察图像来检测关键点。尺度空间是通过高斯模糊和下采样原始图像构建的[^3]。 2. **关键点定位**:在尺度空间中,通过比较每个像素点与其邻域内的点(包括不同尺度和方向)来确定关键点的位置[^3]。 3. **方向赋值**:为每个关键点分配一个主方向,通常是通过计算关键点邻域内的梯度方向直方图来实现[^3]。 4. **关键点描述**:生成关键点的描述符,通常是一个向量,包含了关键点周围区域的梯度信息。这个描述符对图像的尺度、旋转和亮度变化具有鲁棒性[^3]。 5. **匹配**:使用关键点的描述符来匹配不同图像中的关键点,从而实现图像之间的对应关系[^3]。 SIFT算法在多个领域有广泛应用: - **图像匹配**:能够在不同尺度、旋转和光照条件下准确匹配图像中的关键点,因此可用于图像拼接、图像检索等任务。 - **目标识别**:可提取目标的特征,用于识别图像中的特定目标。 - **3D重建**:通过匹配不同视角下的图像关键点,可实现三维场景的重建。 以下是使用Python和OpenCV库实现SIFT算法的简单代码示例: ```python import cv2 # 读取图像 image = cv2.imread('your_image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 创建SIFT对象 sift = cv2.SIFT_create() # 检测关键点并计算描述符 keypoints, descriptors = sift.detectAndCompute(gray, None) # 在图像上绘制关键点 image_with_keypoints = cv2.drawKeypoints(image, keypoints, None, color=(0, 255, 0)) # 显示结果 cv2.imshow('Image with Keypoints', image_with_keypoints) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值