关注“迈微AI研习社”,内容首发于公众号
作者丨土豆@知乎
来源丨https://zhuanlan.zhihu.com/p/158857128
本文已获授权,不得二次转载
前言
在深度学习中,我们总是不可避免会碰到各种各样的损失函数。通常来说,损失函数都是高维的函数,难以可视化为人类可以分辨的二维或者三维形式,因此这里介绍一种通过在高维空间中切片的损失函数可视化手段,并且讨论下模型的参数空间。
模型的参数空间
我们知道,在机器学习,特别是深度学习中,整个模型有着数以万计,百万计的参数,包括有权值,偏置等,这些参数通常来说都是实数,如果用表示模型的所有参数,既是,其中就可以表示模型的参数量。我们可以知道,的每个分量都是可以自由取值的,当每个分量遍历了所有可能的取值时,我们不妨把模型