Description:
在一个二维平面内,有nnn个矩形的毯子,初始,在格子坐标(0,0)(0,0)(0,0)处,有一桶油,过时间ttt后,它会向四周扩散(8个方向),即为一个中心在(0,0)(0,0)(0,0)的边长为2t2t2t的正方形。现在有qqq个询问,对于每个询问求tit_iti时油覆盖的毯子的面积。注意:毯子之间的重叠部分被覆盖也算。
n≤105,x,y≤106n\le10^5,x,y\le 10^6n≤105,x,y≤106
Solution:
- 这道题大概是一道几何数学题吧…
- 首先不断画图分析(
瞎猜),发现随着ttt的增长,覆盖毯子的面积是一个数列,其数列先是一个等差数列,再是一个常数列。 - 为了方便差分,我们可以将二维平面的每个象限都翻转到第一象限,也是因为油是正方形才可以这样。
- 这样复杂度为Θ(n+m)\Theta(n+m)Θ(n+m)
Code:
#include<bits/stdc++.h>
using namespace std;
#define REP(i,f,t) for(int i=(f),i##_end_=(t);i<=i##_end_;++i)
#define SREP(i,f,t) for(int i=(f),i##_end_=(t);i<i##_end_;++i)
#define DREP(i,f,t) for(int i=(f),i##_end_=(t);i>=i##_end_;--i)
#define ll long long
template<class T>inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template<class T>inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
template<class T>inline void Rd(T &x){
x=0;char c;int f=1;
while((c=getchar())<48)if(c=='-')f=-1;
do x=(x<<1)+(x<<3)+(c^48);
while((c=getchar())>47);
x*=f;
}
const int N=1e5+2,M=1e6;
int n,m;
struct point{
int x1,y1,x2,y2;
}A[N];
struct p50{
void solve(){
while(m--){
int t;Rd(t);
int X1=-t,Y1=-t,X2=t,Y2=t;
int x1,y1,x2,y2;
ll ans=0;
REP(i,1,n) {
x1=max(A[i].x1,X1);
y1=max(A[i].y1,Y1);
x2=min(A[i].x2,X2);
y2=min(A[i].y2,Y2);
if(x1<=x2 && y1<=y2) ans+=1ll*(x2-x1+1)*(y2-y1+1);
}
printf("%lld\n",ans);
}
}
}p1;
struct p100{
struct f{
ll b,k;
};
vector<f>F[M+5];
ll ans[M+5];
void Line(int x,int y,int top){
if(x<y)swap(x,y);
if(x==top){//chang
F[top].push_back((f){top-y+1,0});
F[top+1].push_back((f){-(top-y+1),0});
}
else {//deng cha
ll b=x-y+1;
F[x].push_back((f){b,2});
F[top+1].push_back((f){-(b+2*(top-x+1)),-2});
}
}
void Sum(int l,int r,ll b){
F[l].push_back((f){b,0});
F[r+1].push_back((f){-b,0});
}
void Add(int x1,int y1,int x2,int y2){
if(x2<y2) swap(x1,y1),swap(x2,y2);
if(x2==y2) Line(x1,y1,x2);
else {
if(x1<=y2){
Line(x1,y1,y2);
Sum(y2+1,x2,y2-y1+1);
}
else Sum(x1,x2,y2-y1+1);
}
}
void solve(){
REP(i,1,n){
int x1=A[i].x1,y1=A[i].y1,x2=A[i].x2,y2=A[i].y2;
if(y1<0 && y2<0) y1=-y1,y2=-y2,swap(y1,y2);
if(x1<0 && x2<0) x1=-x1,x2=-x2,swap(x1,x2);
if(x1<0) Add(1,y1,-x1,y2),Add(0,y1,x2,y2);
else if(y1<0) Add(x1,1,x2,-y1),Add(x1,0,x2,y2);
else Add(x1,y1,x2,y2);
}
ll b=0,k=0,res=0;
REP(i,0,M){
SREP(j,0,F[i].size()) b+=F[i][j].b,k+=F[i][j].k;
ans[i]=res+=b;
b+=k;
}
while(m--){
int t;Rd(t);
printf("%lld\n",ans[t]);
}
}
}p2;
int main(){
// freopen("blanket.in","r",stdin);
// freopen("blanket.out","w",stdout);
Rd(n);
REP(i,1,n) Rd(A[i].x1),Rd(A[i].y1),Rd(A[i].x2),Rd(A[i].y2);
Rd(m);
if(n<=1000 && m<=1000) p1.solve();
else p2.solve();
return 0;
}